
AD—A068 970 DELAWARE IMXV NEWAR K DEPT OF COIWU1tR APC DFORMATI—ETC F/G 9/2 1TOWARD A LIBRARY OF FORMAL OESIGNS OF SOFTWARE . (U)
1979 R S WEISCIEDEL. L SALS8URS AFOSR—7e—3339

UNCLASSIFIED AFOSR—TR—79 0528 pit.
I~~~2

~~e9Ta

I

J

N

I C :t

I I ~
L~ 1ill~

_____ I 8

25 11111 !~ ~ ‘ 6

79~~O 528 LEVEL~

Department of
U
~~~~~TFETI~tYJ

COMPUTER AND INFORMATION SCIENCES

H O
UNIVERSITY OF DELAWAR E

Newark , Delaware 1971 1

ApproTed for public release ;
distributiOn unlimited..

~A ~~ LQ_ 11Q T 

—

~~~~~~~~

-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ —.-----.

-

a

U N ~~LA~~~I F 1 E i ~ _ .____._1~~~~~~~~

__•• f I
•
‘
~~~~~.. SfC t .~~r~~~~~~’A S S I F I C AT I O N  OF Tn~ 5 PAC..E (I4’he, l)es. Ente,e~

1. PORT DOCUMENTATION PAGE F~~~?C~~~~~~~~~~ !c~~~
J’ORM

~j~fAI1’OSR TR 7 9 
~~ 

_•___~7 Gov T CESSION NO. 3. RECIPIENrS C A T A L O G  NUMBER

4. T I r L~E (an d S.~bt,tl.) / E OF REPORT 6 PERIOD COv EREO

• ~
‘
~ OWARL) A LIBRARY OF FORMAL DESIGNS OF SOFTWARE~ ~Fina1 ~ ,

~— 

- 

6. PERFORNjN ~~ ORG . ~~~P6RT NUM BER

7 AIJ T p,OR(,~ 8 CON TRACT OR GRANT NUMBER(a )

\ Ralph M.fWe ischedel ~~~~Linda/Sa1sburg 1 . -

- 

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

9 P E R F O R M I N G ORGA N Z A T I ON NAME AND AOO R E6S 10. PROGRAM ELEMENT. PROJ ECT , TASK
I tIe 9 A R E A 6 WORK UNIT NUMBERS

University of Delaware ~~~~
‘ N~~~

’
Department of Computer and Inf rmation Sciences 611O2F 2304/A2
Newark , Dela wa re 19711 —____________________________

II. COP~lTROLLING OFFICE NAME AN D ADDRESS REPORT DAT E

A ir Force Office of Scientific Research/NM ____________________________

Boil ing AFB , Washi ngton , DC 20332 1~~~~~UMBEROF PAGES (

___ 103
14 MONITORING A G E NC Y NAME & ADDRE SS(. i d ifferent from Controltina Oll~ce) 15. SECURITY CLASS. (of this report)

~~ :
‘
j~~ ~L~’

I UNCLASSIFIED
/ IS.. DE CLASSIF ICATION DOWNGRADING

IV ”) / ‘ , , j SCHEDULE

16. DI5TRl9~.JT ION STATEMENT (of this Report)

Approved for public release; distribution unlimited 1—

I” DISrRIBIJ TION STATEMENT (of the abslract entered In Block 20. II differen t from Reporl)

15. S U P P L E M E N T A R Y NOTES

t9 . K E Y W C/00 S (Co r / I i n o e fi n rever , ,~ ,.tde ~f necessa ry and i den t i f y by block number)

I

23 ABST RAL. ‘~ f C . ~r,(In , ’ on rarer.,. ~tde ,f nece~ 8ary end ide: t,f y hr block number)

Many of the problems of large software systems have been attributed to the
design phase of software development , problems such as high maintenance costs ,
the predominance of software error type9 traceable to design (rather than to
cod ing), and the high cos t of diagnosing and correc ting design errors. The
most promising approach to these problems is the forma l specification of moduli
interfaces , dur ing the design phase , based on the information—hiding principle.

The advantages of forma l specifications are as follows: (1) Their prec isior,

DD ~~~ 1473 UNCLASS IFIED 4I_J/J~~~~~ ~__ j
’

h•

,

- ~~~ ~~
. ~~~~~~~~~~~~~


~~~~~~~~~~ ~~~ .~ . ~~~~~~~~~ . .

A~~, I t ’ / (  A~~~)N Ut T ’ s 1 ’~ P A / .,t , I4tS ~~~ 11.1. t~nt...J)

,.‘O,  A h ’ ,t , 1 . 1 /  t ~‘II t III(lt’J

I , i u k  Ut .11111) 1 ~~II I t  ,IIItI ,*t (. (‘lit L .111 1 0 (le t  .~ i I 5110(1 1 d t’(I t d~5.~ll OIl dt ’~’. t ~~ii ~~i’ i’~ ’ t s

(2) 1lIo\ i i r o v t d t ’  I I 1 I U L ’ I / / i I  v t r i t i ~ ’ . i t  l ol l ot  ,i ii l ( ’ r , I l ( ’ l I i c i i i \ ’  t i t ’ s i glIt ’Il S v S t t ’III
wh i it’ i t i ‘~ 1t ug d t’ i ~ ut .1 • 1 Spo C .1 0 5  1 ~,I1 V ~I 1 11 1 

~i I Oil I. e.im~ t. ou Id
I ~~o roll s lv  v o t . I v  ,i Jt ’ I y II it t ’ I or t ’  i t  I S III1~

) I t’IIICIII (‘d , pt’ i’h~ip S W I  I h th~ .i I d
ot  ,i/~I( t l I ( ,t t t ’ti ~ ~~~~~~ t t ,ir (h Ilt ’ t’lt l i l t ’  V O i l I j~ ’ ,t t  i on. (l e~ Form~i I S 1t i ’ (  ii i t ’ ,i t lUl l
CIi,It) i C .  I I  1° I t / I l  S / j ~ t’t ’ I I i ’ .it LO l l  U I I 1I(’ rt ’(1u I l’t ’IlIt’Ilt t ii.*t dli t’ IlItt( ’tilIt ’d t onlpUtt!

st t ’~i~ 551St C S I OrI1I I U • $~ ‘I 
‘
~ ‘l’lit’ \ 1 011111 I 1W W i  t Ii t i ll ’ Iii I 0 tInd I i OIl—il I d i  ~ig

~ 1 1  lIt’ I p It ’ t ~ e’ 11.1 1 C d i ’ . I ~ II 01 Sr s I  (~I1I5 I lid I ~l rt ’ I1IU(’ 11 t’d S It’ ~ t o m d i i  v .t Ild
lii .1 1 l~

t i l t ’ It / l IS t I SIR’ / ’ I t  I t  , i t  L O l l  t ’ t  I f lOd l i l t’ S i t  sd I hds .m se I’ iotm s dr,iwit .it k
l ie  up  t t o u t  c i  I ~t r t  il l C It ’d  I I ng I II t ’IlI Is t ’oi is tdt ’ r , mt i  i t ’ . COIIS ’qut’flI l v ,  Lii i

i’ o sea rc II it.i s i IIVt ’ sI i g.i I od I lit ’ I i’d I hi I i t  v 01 .1 1 I it i’a I V  Of  I o rUst 1 s~
t
~~c I I i t  a I OUS

50 1 11.11 tit ’ s l.~ l It ’ i’ s C t l l l  Id ilu I Id on lt~ wor k of ot lit ’ r~; ,ind the rt’ llv s igni I i t , i I I t  y
C Ut t i t ~ U~~ I 1- 0111 t~I I 

(
~r I i IIV ol red. Itt ’ h a  Vt ’ dent II it’d I I Vi’ I s sit ri S .15

p.1 r.IIllo(Int I o t lit’ I ca .s  i III l it  V t h i  / .( I t ’il .1 1 L[/ r,II’V , ,Il)ti i I , IVt ’  t ’O i iC t ’flI rat ed on
adapt Ln~ n Ie t i I oJo log I t ’ .I 1 t t ’Ch IU IqI I I ’s .ml read y t a i n t l i i i’  iii s o t  t w , t r & ’  e i ig lucering

I .
I I N I ’ t  \ ‘ ‘~ ~ Fl i”P

I.

____________________ ________ 
.,,_,_lt!!! ~~~~~~~~~~~~~~~~~~ ‘~—~~ ———• - —- - .-•- - -- , - S... ~ — — ‘  -~-~-— 



-~~~~ ~ ‘fl ~~~~~~~~ — r~~~~~~~~~~~~

- -

TOWARD A LIBRARY OF FORMAL DESIGNS OF SOFTWARE :

Ralph M. Weischedel
(Principal Investigator)

Linda Saisburg

..: ~~~~

. ~ c\ ~I , - “

“J.tLij~~
/~

•z
~ - ~-l i~7Ø~ / 111:

AIR FCi~ S 0i-~ r~~ r~
,. ‘C 1” ~~~~e,

~~ 
‘

~ :~ ~ ~~~:~ t n  JCL r sviewed arId j ;
D trj~t~tj~~ i;’;~j 1~;~;~

e LII? (YR 19O~12 (7b).A. D. T~u1E
Technical Intorz~~tjo~ Ofti2er 

. ‘

*Final report of research sponsored by the Air
Force Office of Scientific Research , Air Force
Systems Conunand , USAF , under Grant No. APOSR-78-
3539. The United States Government is authorized
to reproduce and distribute reprints for
Governmental purposes notwithstanding any copy-
right notation hereon.

Li

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ; —

.-~~~~— ~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

Abs tract

Many of the problems of large software systems have

been attributed to the design phase of software development,

problems such as high maintenance costs, the predominance

of software error types traceable to design (rather than to

coding), and the high cost of diagnosing and correcting

design errors. ~The most promising approach to th se
. 1 ~ :~~‘ ~~~~~~ • .

~~ ~~~~~~~~ , 1

problems is the formal specification of module interfaces,

during the design phase, based on the information-hiding

principle.

The advantages of formal specifications are as follows:

(1) Their precision, lack of ambiguity , and attention to

detail should cut down on design errors. (2) They

provide informal verification of a hierarchically designed

system while it is being designed. (3) Special design

validation teams could rigorously verify a design before

it is implemented, perhaps with the aid of automated tools

for some of the verification. (4) Formal specification

enables rigorous specification of the requirements that an

embedded computer system must conform to. (5) They

combine with the information-hiding principle to enable

design of systems that are much easier to modify and

maintain.

-‘ ‘ Yet, the formal specification of modules itself has a

serious drawback: the upfront effort in creating them is

considerable. Consequently~~this research has investigated

I

‘I

__ -‘ - -• ‘.~~~•- ~~~~~~~~~~— • ,-- -- ..-- -•- —--.,, -., ‘—•~~~~~~~~~~ - , -~~~~-~~~--I. ~~~~~~~~~~~~~~

the feasibility of a library of formal specifications so

that designers could build on the work of others and thereby

significantly cut the upfront effort involved . ~~
, We have

identified five issues as paramount to the feasibility of

suc h a library, and have concentrated on adapting
methodological techniques already familiar in sOftware

engineering.

‘c

S~ .,tia4i fl

L
L’iS ~ ~~~~~~~ L~I~T t1~~:nr ~ i

t I
,
,

t

S *
~“- ‘.—.~~~- ~~~~~~~~~~~~~~~~~~~~~ __________________________________

—--—S . 4_~
.—-~ -5-- ------ -5. -

Table of Contents Page

1. Conclusions and Recommendations 1

2. Motivation of the Research 11

3. Issues 20

4. Method used in studying the five questions 24

5. Detailed results 29

6. Related work 53

Appendices

I. Brief description of SPECIAL 57

II. Specification of a stack 72

III. Specification of a queue 76

IV. Specification of a binary tree 80

V. Specification of a text editor 89

1-

~~~~~~~ ~~~~~ .— -. ~~~~~~~~~~ .- —- . ~~~~~~~~~~~~~~~~~~~~~~~ _~~~ ,~~~~~~~~- 5— - . ~~~~~~~~~~~~ —- .. .— — —..
~~~

-.- - . . - - - ,~~~ - ~~~~~~~~~~~
‘

--

-.
‘~~~~~ ‘ ‘ ‘ ‘ ‘ “ ‘

~‘ “ “ ~‘r — , .~~~~~~ . ,, ~~~ .— ,..-
,_

—1-

1. Conclusions and Recommendations

This final report is organized as follows : this

section briefly summarizes the conclusions and recommen-

dations of the research after a very short exposition of

the purpose of the project. Section 2 introduces the

research by explaininq its motivation and purpose . Sec-

tion 3 introduces the major Issues that we considered .

In section 4, we item ize exactly what we did and the

analysis techniques used . Detailed results are justi-

fied in section 5. The relation of this work to that of

others appears in section 6. Several appendices are

includ ed. One describes the specification languag e used

in the examples; the remaining four are a small sampling

of module specifications written during the course of

the project.

1.1 Brief introduction

• Large software systems can be defined as systems

requiring at least 25 programmers to develop and requir—

ing at least 30,UOO lines of source code. Case studies

(Boehm , et.al. (1975) and Hamilto n and Zeldin (1975)) of

such systems have shown that software errors traceable

to the design phase of system development can account

for as much as two—thirds to three—quarters of all error

types, even on generally good software systems, compared

wi th as little as one—quarter to one—third of all erro r

types traceable to the programm ing or cod ing effort.

The types of errors traceable to the design phase are

_ _ _ _ •

—2 —

pred ominantly errors in the interface of subsystem s or

modules.

Desiqn errors and design validation are particular-

ly c ruc ia l in embedded computer systems. An embed d ed

computer system is a system developed specifically to

function as a component of a 1arqer system .

P design technique to address th•se probl ems was

developed by Parnas (1972). It concentrates on defining

the interface of a module in enoug h detail that all oth-

er systems may use ~t , but completely Indepe ndent of the

way the module may be impl emented . Since programming

lang ua ge s focus a t t en t i o n on how to impl ement a m o d ul e ,

several new languages fo r formally specifying the inter-

face of modules have been developed in the last few

years .

The technique of formal module specifications seems

to o f f e r much toward solving many problems i i ~’l ud i ng :

the h igh cost of so f tware ma in t enance , the pr edominanc e

of des ign e r r o r s , the d i f f i c u l ty and cost of diag nosing

and correcting design errors, and the special design and

maintenance probl ems of embedded computer systems. Yet ,

the creating of formal specifications is very difficult ,

requiring much upfront effort, and therefore the solu-

tion itself is rather costly.

The na tu r a l sol u t ion is to develop a l i b r a r y of

formal specifications of modules. By reusing module

specifications , rather than recreating them , the cost of

the upfront effort would be d ramatically cut and the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ :~~~~~~‘i ., - — - —5  ~~~~~ , _ _ _ _ _ _ _ _ _ _ _ _



— ---- --- — -—-—-. -- -.- --
~~~~~~~~~~~

‘
~~~~~~~ 

—~-p~——-

— 3 —

problem s listed in the preced ing paragraph would be

solved .

That is the motivation of this research In

examining the feasibility of such a librar y . Several

issues a re  Involved in such a library beinq feasible.

To answe r each question about the feasibili ty of a li-

brary of formal module specifications , we have given

special attention to techniques t h a t  are alread y

available in software practice and could be adapted to

these particu lar questions regard i ng the feasibility of

a library, (rather than spend inq effort on developinq

yet another languag e or another methodology) . Since

formal specifications are so hard to create and demand a

~~y of thinki ng about design which is rather new to most

i~ndlvidua ls , our focusing on familiar software

techn iques that could be adapted to the probl ems of such

a library has the additional benefit of making the

library far more practical and usable.

1.2. Summary of conclusions

Three technique s hav e proven very useful for -

detecting flaws , omissions , and errors in the formal

specifications of module interfaces. One is an automat—

ic tool (Roubine and Robinson , 1976) which checks for

syntactic correctness and some simpl e semantic problem s,

such as referenced but undefined functions or variables.

A second is a walkthroug h to check the correctness and

completeness of the interface and to criticize the



-‘---‘ - 5 - - - .-.— 

1

readability of the specificati on. (For a library of

such specificati ons , the guidelines we have suggested

for documentation would enable each user of the library ,

in essence, to ~~~ form a wa 1 k t hr o ugh of the

specification , inform a~j~ checking its correctness.

Thus , w i t h  each u se of a modu le  f rom the U b r a r y ,  our

confidence in the correctness of the speclfic~ation can

Justifiab ly increase.) The third technique is to wr i te a

very rapid implementation o~T the specified module in a

very high—level language. Each technique uncovers flaws

or omissions in the specification .

Rigorous design validation before cod ing even be—

gins would be possible using formal specifications ,

s ince  an indepe ndent  v e r i f i c a t i o n  and v a l i d a t i o n  team

could be called in to verify the design. For instance ,

- I the designs of two operating system s, (Neumann , et.al.,.

1977 and Ford Aerospace , 1978) have been proven to main—

tam certain security properties before impl ementation

began.

Automatic retrieval of module specifications from a

library is analogous to the bibliographic retrieval

problem . Since that is such a difficult problem involv-

ing so many research projects , we conclud ed not to ad-

dress that aspect fur ther , but merely suggest the use of

techniques such as keyword analysis.

For a given application , it is crucial that only a

few prototype s in the library cover the vast majori y of

variations. For if more than a few prototypes must be

~~~~~~~~~~~~~~~~~~ ~~~~~ -5-~~~~-- —-~~~~~ 
_ _

_ _ _ _ _ _ _ _- . - - --5- - - _s _ _ __.. _ _ ._ i - .,• _. -5- 5’ ., SE—’

-5— --
~~~~ 

-,‘- —-~~~~~~~~~~~ 
- ‘ . . -

—5—

considered , too muc h of the designers ’ time will be tak—

en studying the many alternatives. Since the formal

specifications are difficu l t to understand , it is un-

realistic to expect tha t  a des igner  can c a r e f u l l y  stud y

more than a handful .

In the examples we hav e written during the

research , we hav e found that two to four proto types seem

to cover most need s for  a p a r t i c u l a r  type of da ta  struc-

tu r e and three prototype text ed itors seem to cover most

varieties of text ed itors. This was accom plished by

followi ng three princ iples for writing and selectiflg

prototype s for the library.

1) Details that are somewhat arbi-

trary and which the des igner  may

wi sh to modify should be local ized -

into subdefinitions so that the

modifier need modify the specifica-

tion in only one place for each

detail .

2) Aspects of the module that are

not fundamental need’ not be speci-

fied in the library. A whole host

of valid command languages may be

added on to the logical a b i l i t i e s  of

any given text ed itor; therefore ,

our prototype specifications did not

includ e a command language.

-5 ——  —- --5---~~~~~~ .’.- 
~~
-
~~~~~~

—— ‘ . — . - .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

.5.—



- ~~~~~~ -- ——-‘ .-~~~-~~~~~~~~~~~~~~~ - . -— - - --- ~~--—— ‘ “

3) The prototype should inc lud e as

many logically different operations

as possible , s ince  the desi g n e r  can

eas i ly  de le te  ones unneed ed in a

p a r t i c u l a r  e n v i r o n m e n t .

Al thoug h the r e s u l t s  us ing  the t h r e e  p r i n c i ples a r e

v e r y  p r o m i s i n g , we simpl y have  i n s u f f ic i e n t  ev idence  to

judge whether appl ication areas other than data struc-

tures and tex t ed itors will also be covered by only a

handful of prototypes. Further research and experience

is definitely need ed to answe r this question.

A third issue is what to store In the library.

Cl e a r l y ,  the spec i f i ca tions of the module  in ter faces

must he stored , f o r  th i s  is pr ere qu i s i te to the modern

desi g n me thodology proposed by Pa r n a s  and many others to

solve the pro bl ems of l a r ge so f tware systems an d em bed-

ded computer systems. For any specification , many

h i e r a r c h i c a l  prog ram designs an d many pr og ram s impl e-

men ting it are possible. Each will have differing space

and time requ i remen ts, and ther efo re  are necessary al-

ternatives for differing environments. This could in—

vo].ve several program s for each prototype module inter-

face. Furthermore , the need of a d esigner to tai l or the

interface of the module sl ightly for his/her particular

need s, as one would expect to happen normally, requi res

modifyi ng any selected program impl ementing the module.

Consequen tly ,  we have no definite answer as to whether

storing the alternative impl ementations as well is

- 
- 

. .-~ ~~- - iT...
&, .. ..,~ .—s-._ ——. ~~~~~~~~~~~ 

.. ~~~~~~~~~~~ 
,



- ,

—7—

f e a s i b l e .

We hav e id en t i f i e d six i tems tha t mus t be stor ed

w i t h  the m o d u l e  s p e c i f i c a t i o n  as documenta t ion .  Th ese

are short descriptive item s deslqned to enable a

designer to quickly identif y a handful of interface

specifications that are closest to his/her needs.

Since formal module specifications are so hard to

unders tan d , a four th issue is how to ma ke them more

understandable. We have identified three reasons for

the difficulty in understand i nq formal specifications.

P r o g r a m m i n g  l anguages  focus on impl emen ta t i on  de-

tail; the modul e interfaces must be specified Inciepen—

dent of impl ementation detail. Consequently, the seman-

tics of these l anguages is f u n damen ta l l y  d i f f e r e n t than

the lang uages we are familiar wi th for programming .

Therefore , rather than trying to devise a new language,.

we have shown how to adapt many of the pr inc iples of

wri ting well—structu red , eas i l y  unders tand able prog rams

to the task of writing understandable module specifics—

tions.

The last Issue is how to define the Interfaces to

be store d in the l i b r a r y  so tha t they may he eas i ly

m o d i f i ed for  or ta i l o r e d to the d emand s of a spec i f ic

environmen t. Two princ iples were discovered for this.

One is to local ize any detail that is somewhat arbitrary

in a defini tion ; then , to mod i f y the d eta i l , on ly  one

chang e need be made. Second , the autho r of the specifi-

cation should ma ke a list of the details that he/she

— -5- - -.-~~x. -
_.__ _.___ ..

~~—— ‘- -5- ~~~~~~~~~~~ -5--5•-5-5 ~~~~. ~~~~~~~~~~~ —,_._ -‘~ --5-5 ’ -‘



suspects mig ht need modification , ~;o that the autho r ’s

anticip ation ot posstblt~ chanq e~i ‘aves the clestqner ’s

e f f o r t ,

1.1 RecommendatIons

For each module specific ation writte n , we quickly

impl emented a correspo nd i ng proq ram In a v e r y  h i g h  l eve l

lanq uaq e as a means o f  t e s t (n q  the  co m ple t e n e s s  of  the

interfac, specified . The r a p i d i t y  w i t h  w h i ch  we cou ld

create this quick—and—dirty Impl ementation suqqests that

very high level lang uages migh t he the means of creating

softwar. breadboards. Thoug h th. breadboard would be

wasteful of memory and time , it could he created quickly

to demonstrate the functional character istics of the

system . ~f a scale fac to r for  the sp.edup and the econ-

omy i n  memory  usaq e can he e s t im a t e d  f o r  g o i n g  f r o m  th &

bread board to a p r o d u c t i o n  sys t em , the  breadbo ard  would

also provide ballpark estimates f o r  the p e r f o r m a n c e  of

the module.

In this way, the hreadhoard would provide end users

wi th actua l use of the system under design as a means  of

design validation. Furthermore , we found that ~ s i q n i —

fican t portion of the specification l ang uage features

had a standard translation Into the very high level

language. Consequently, a software~ tool could he

designed to perform muc h of the trans lation ft in specif-

ica tion lang uage to very high level language automat I-

cal ly.

- 5 ~~~~~-~~~~ -——- - — .  — - - . —- ________ 5 . .  5- ‘S .



Therefore , we recommend empirical research in the

use of an e x i s t i n g  h t q h  level  lanq uaqe ,  suc h as

INTERL I SP  (T e l t e lm a n , 1975), for the purpose of rapidly

build ing breadboard system s correspond i ng to a design.

Research in bui lding and experimental use of a sem i-

automatic tool to translate a stqnlficant portion of the

specifications Into a v e r y  h i gh  level l anguag e also

seems to be a high—payoff area for investigation. (The

software tool could not be fully automatic since the

specification lanquaqe specifically l eaves out Impl emen-

tation detail . So, some cod i nq by a human is always

necessary.)

An o t h e r  a rea  for  f u r t h e r  w o r k  I s  to spec i fy  m any

m o r e  m o d u l e s  f r o m  a d i v e r s e  c lass  of  appl i c a t i o n s .  Our

resul ts were promi stnq , since a handful of prototype s

could cover most need s in the areas of data structures

and tex t ed i tors. However , our experience is simply too

limited to project whether this key Ingredient to the

success of suc h a li b rary w i ll carry over to other ap-

plica tions.

In the same way ,  we d id  not hav e t i m e  to expe r iment -

wi th storing several alternate impl ementations for each

module specifica tion . For this to be feasible , the

number of alternate Impl ementations per module should he

small. Al so any requirements to mod i fy or tailor a pro—

totype m o d u l e  in t e r f a c e  to a p a r t i c u la r  e n v i r o n m e n t  must

be e a s i l y  Impl ementab le  changes  I n  the a l t e r n a t i v e  pr o—

grams  stored w i t h  an i n t e r f a c e  s p e c i f i c a ti o n .  T h i s  is 



- 5 - 4 -s 5- 
~~~~~~5-’ ’

—5-—- __~5--5_5 ~‘--.5 ‘—.5-

— i o —

certainly worthy of further research.

Our f i n a l r e c o m m en d a t i o n is t h a t a l i b r a r y suc h as
we have proposed should not be beg un f o r ac tua l use
until specif ica tion l anguages leav e the ex pe rim ental
stage. These languages , being very yo ung , will continue

to be enhanced , parti cularly in the area of specifyinq

the semantics of parallel computing . Liskov (1977) pro—

vides a survey of the state of th. art in specification

lang uages.

L ‘ ‘~~‘_ —

.5-U-.- -
~~~~~~~~~~~~~~~~~ 

.- - -

‘7 —-,. --
— 1 1—

2. M o t i v a t i o n  of the Research

The at trac t iveness o f having a l ibrary of the pro-

duc ts of previous software development is the  b e n e f i t  of

buildin g on the work of others. There are several rea-

sons in particular — fo r wanting a library of formal

s p e c i f i c a t i o n s  of m o d u l e s , the  key produc t of the design

phase of the  s o f t w ar e  development  process.  We pr esent

these reasons  I n  the f o l l o wl n ~j subsec t ions .

2.1 The cost of software and its maintenance

The h i g h  cost of s o f t w a r e  is  w e l l — k n o w n  and need

not be bel abored ; however , the i m m e n s i t y  of  the  probl em

can be quickly indicated by such f a c t s  as the f o l l o w in g .

It is estimated in Boehm (1977) that the annual cost of

software in the United States is $20 bil lion dollars , or

almost 2% of the entire gross national product. In a

study for the Air Force , Boehm (1973) reported that the

estimated software expenditures of the Air Force for

1972 were three times the hardware expenditures. Even

more startling is the projection from the same study

j that by 1985 the annual software expenditures of the Air

• Force would be nine times the hardware expenditures.

At the same t i m e , the  m a i n t e n a n c e  costs of  s o f t w a r e

are of deep concern .  Large  so f t w a r e  system s a r e  notor i -

ously difficult to modify in response to chang ing need s

or the d iscovery  of bug s not  found u n t i l  d e l i v e r y  of the

product. For ins tance , OS/ 3~ 0 , a m a j o r  opera t ing  system

for the IBM 360 series of machines, is one of the

- .
.—

~~ ~~~~~~~~~~~~ j

. ~~~~~~~~~~~~~~~ ..— - .—~~~~~ - .- - . - — — ~.-—--— 5—.__~~~~~~~——~ -•——~~~~ -•—~ -_, —..-..



— 1 2 —

largest software system s ever developed . It is estimat-

ed , (Boehm , 1973), that with each new release of the

sys tem , 1000 new software errors were introduced .

Insight I n t o  the causes of  suc h m a s s i v e  s o f t w a r e

modification problem s is given in  the  case s t u d i e s  c i ted

in the nex t section.

2 . 2  D e s i g n  e r r o r s  and the i m p o r t a n c e  of d e s i g n  va l i da -

t i o n

A m a j o r  cause of the m a i n t e n a n c e  problem s of

s o f t w a r e  is the  d e s i g n  of l a rg e s o f t w ar e  system s , as

evidenced In the followi ng case stud y by TRW. Boehm

(1975) reports that the software studied Is an exampl e

of a generally good sys tem , delivered on time and within

budqet by TRW. The system consisted of 100,000 source

code statements and underwent five modifications durlnq

i ts  l ife cycle, rang ing in size from just under 1000 up

to 10 , 000 source code s tat emen t s  chang ed .

The e r r o r s  found in m a k i n g  the f i v e  m o d i f i c a t io n s

were c a t ego r i zed  in to  224  types.  In a summary  a n a l y s t s ,

the  e r r o r  type s were c l a s s i f i e d  as to t h e i r  o r i g i n ,

e i t h e r  t r aceab le  to the design phase (requiring a modif-

ica t ion of the  d e t a i l e d  d e s f q n  d e s c r i p t i o n )  or a t t r l b u t —

able to the cod ing phase of software development. Error

types traceable to the design phase tend ed to involve

in terface problem s between the modules of the system .

RN o t on ly  d id  the number of type s of  de s ign  e r r o r s

outwe igh the cod i ng e r r o r  type s , ~4 percent  to 36

I 
— — ~_ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .5- — _ • . , ~~_- ....

~~~~~~~ - 
_. _.L . ~~~~~~~~~~~~~~~~~~~~

—1 3—

percent, but also the design errors took the longest by

far to de tec t,” (Boehm, et.al., 1975, pp. 125—126). In

fac t, 54 percen t of the error types were not found till

integ ra t ion tes t or later ; o f these , S out of 6 were

des ign e r r o r s . Thus , the o v e r w h e l m i n g m a j o r i t y (7 5 %) of

the cod i ng error types were found before Integration

test , but the overwhelming m a j o r i t y (7 0 %) of d e s i g n

error types were undetected until Integration test or

later. In a related study, it was found that the aver-

age time to diag nose and correct design—type errors was

about twice that of cod ing errors.

Similar results have been reported by Hamilton and

Zeldin (1976); 73 percent of all errors found during

integration tests of the APOLLO projec t were interface

problems.

C l e a r l y then , the des ign phase of s o f t w a r e

development is most c r i t i c a l in b u i l d i n g l a rg e s o f t w a r e

system s tha t a re both m a in t a i n a b l e and r e l i a b l e . Design

v a l i d a t i o n is t h e r e f o r e c ruc i a l be fore coding begins .

For a number of reasons g i v e n in the nex t sect ion ,

• the fo rmal s pe c i f i c a t i o n of modules has been suggested

by many computer s c i e n t i s t s as the s o l u t i o n to these

problems.

2.3 The a t t r a c ti v e n e s s of f o r m a l modu le specifications

By a modul e ,’ we mean a t i g h t l y re la ted group of

algorithm s and data tha t pr ovide some com pu ta t i ona l

f a c i l i t y . Because of the a fo rement ioned problem s of

‘4
_ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~• .~~~~~~~~~ ___

—1 4—

m a i n t a i n i n g s o f t w a r e , the i n f o r m a t i o n — h i d i n g p r i n c i pl e

was suggested by Parnas (1972) and has been widely ac-

cepted since then. Accord i ng to this princ i pl e, one

should modularize a system by Identif ying those design

decisions which might be reversed due to chang i ng cond i-

tions dur ing the life—cycle of the system . For each

suc h d e s i g n d e c i s i on , a m o d u l e is d e f i n e d suc h t h a t the

resul t of decid ing that desiqn issue is hidden in the

module and invisible to processes or peopl e using the

module. The info rmation—hiding princ i ple requires that

there is a techn ique for pr ecisely specifying the inter-

face of a module and the visibl e behavior of the module

in all cir cumstances.

In this way, designers can completely specify the

modules of a system such that a prog rammer team can be

assigned to each m o d u l e and suc h t h a t each team can won.

i ndependen t l y w i t h o u t knowing any more about the other

modules than the s p e c i f i c a t i on s of the I n t e r f a c e s .

Since each m o d u l e depend s on on ly the i n t e r f a c e s of the

other modules , any of the d e s i g n d e c i s i o n s h i d d e n by the

modularlzation based on the info rmation—hiding princ i ple

can be reversed e a s i l y , f o r on ly one module mus t be

m o d i f i e d . Parnas (1976) d e m o n s t r a t e s how t h i s technique

enables the s p e c i f i c a t i o n of a f a m i l y of c lose ly re la ted

software system s such that mov i ng to another family of

the system is muc h simpler than would be otherwise pos-

sible. Modifica tions of a system due to chang ing needs

and environmen t during the software ’s l i fe cycle is like

.5.5.- — -- --.~~~~~~~~ - - -j- .- - .— - - ‘—-5- -- -- - - - — —~~~ ---—--—-— - - — .—-. ~~~

—
‘~~~~~~~~~~~~~~~~~~~~~~~~ 5 - -~~-~~~~~- • . • ~~~~~~~~~ .-.—- - - -—-- . 5 5 -

— 1 5—

mov lnq from one member of the family of system s to

another.

Given this , there a re several reasons why formal

m o d u l e s p e c i f i c a t i o n s a ppear so p r o m i s i n g fo r s o f t w ar e

prob lems .

1) Several fo rmal lang uages have

been developed fo r spec i fy i ng the

i n t e r f a c e of a modu le accord i ng to

the In f o r m a t i o n — h i d i n g p r i n c i ple.

They d e f i n e as muc h as is need ed to

know e x a c t l y how to use the module

wi thout c o m m i t t i n g the module to any

p a r t i c u l a r a l g o r i t hm s or da ta s t ruc—

tunes f or ’ impl ement ing i t .

2) Formal s p e c i f i c a t i o n s s t a t e the —

i n t e r f a c e of a modu l e p rec ise ly ,

u n a m b i g u o u s l y , and compl etely.

Design errors resulting from incom-

plete, vague , or ambiguous module

descript ions should he vas tly cut

d own . The case stud y data ci ted in

2.2 testifies to how larg e a percen-

tage of errors are related to inter-

face definition and how difficul t

and expensive i t is to cor rec t such

e r r o r s compared to cod i ng e r ro r s .

3) As Pa rnas (197Th) p o i n t s out ,

‘-4

_ - —5.- --

F ~~~~~~~~~~~~~~~~~~

-

—16—

f o r m a l s p e c i f i c a t i o n of modu les

seem s to be a necessary p a r t of a

topd own development or stepwise

r e f i n e m e n t to d e f i n e the d e s i g n of a

l a r g e s o f t w a r e system . For one mus t

s p e c i f y each a s s u m p t i o n of the nex t

l owe r level b e f o r e proceed i ng to

tha t level .

4) By us inq a fo rmal s p e c i f i c a t i on ,

one can prov e p roper t i e s of the sys—

• tern spec i f ied . For i n s t ance , Ne u-

mann , et .a l . (1977) presents proofs

that their formally specified design

of an operating system q u a r a n t e e s

c e r t ain s ecu r i t y p rope r t i e s of the

system . Fur the rmore , i n f o rmal

proofs of the correc tness of the

des ign can proceed at each step of a

stepwi se ref inemen t as the design

process is in proq~~ess.

5) Wi th a formal specification , a

technical team using machine aids

coul d r i go rous ly v a l i d a t e the des ign

before coding beg ins.

6) It has been shown (Parnas ,

1977b) that using the info rmation—

hiding princ iple to define modules

—17—

by f o rmal specif ica t ions s ignifi-

cantly simplifies the prob l ems of

developing and m a i n t a i n i n g embedded

computer systems. An “ embedded corn —

pu te r system ” is a system developed

s p e c i f i c a l l y to he a com ponent of

ano the r system . Such system s a r i s e

in Defense Depar tment needs.

2 .4 Problem s wi th fo rmal s p e ci f i c a t i o n s of modules

Thoug h the fo rmal s p e c i f i c a t i o n of modules seem s to

o f f e r so much in solving the problem s of l a rg e sof tware

systems , there a re problem s wi th using fo rmal speci f ica—

tions . They a r e ve ry ha rd to create , and t he re fo re

r equ i r e cons iderable u p f r o n t inves tment of e f f o r t in the

sof tware development process . In speaking of t h i s up—

f r o n t e f f o r t , Parnas (1976 , p. 7) comments , “The method

permits the product ion of a broader f a m i l y and the corn—

pletion of various parts of the system independ ent ly ,

but at a s i g n i f i c a n t cost. It usual ly pays to apply ~ he

• method only when one expects the eventua l impl ementat ion

of a wide selection of possible f a m i l y members . ”

Each s i gn i f i can t m o d i f i c a t i o n of a so f tware system

dur ing i ts l i f e cycle corresponds to mov i ng from one

member of the f ami ly of so f tware system s to ano ther .

Consequent ly, whenever i t is likely that significant

m o d i f i c a t i o n s wi l l becom e necessary dur ing the sof tware

l i f e cycle , a broad f a m i l y of s o f t w a r e syst em s must be

—— —---~~~~~
-5---— -

— — _1;__5 ~~~~~~~~~ — —5--—- -- -5-— -. -- .fl

—1 8—

possible from the destqn . For embedded computer sys-

tems , the likelihood of chang e throughout the life cycle

of the system is particularly acute .

2.5 The need for a library

Thus , the technique of formal module specifications

seem s to offer muc h toward solving .y problem s includ-

ing : the hi gh cost of software maintenance , the pred om i-

nance of desi g n er r o rs , the difficulty and cost of diag-

nosing and correcting desi gn errors , and the special

d e s i g n and m a i n t e n a n c e problem s of embedded computer

sys t ems. Yet , the c r e a t i n g of f o r m a l s p e c i f i c a t i o n s i s

v e r y d i f f i c u l t , r e q u i r i n g muc h u p f r o n t e f f o r t , and

t h e r e f o r e the s o l u t i o n i t s e l f i s r a t h e r c o s t l y .

The n a t u r a l s o l u t i o n is to develop a l i b r a r y of

fo rmal specifications of modules . By reusing module

specifications , rather than recreating them , the cost of

the upfront effort would be d ramatically cut and the

problens listed in the pr eced ing paragraph would he

solved .

That Is the motivation of this research in

examining the feasibility of such a library . The issues

involved in suc h a library being feasible are described

In the nex t section.

A l i b r a r y of f o r m a l s p e c i f i c a t i o n s of m o d u l e s has

an a d d i t i o n a l b e n e f i t f o r d e s i g n v a l i d a t i o n . If the

autho r of a fo rmal s p e c i f i c a t i o n fo l lows the gu i d e l i n e s

for doc u m e n t a t i o n tha t we have developed d u r i n g t h i s

- .
~~~~~~~ - — - - ~_• ~,_ - — 

- —.——-—-———-.—•5—- .••—— .- —---5- .~ —•— •-—.—.-----. —• .— ——.— - - .__ i_ ~_~~_ ,— ~I ~~~~~~~~~~ - ‘ - -



— 19—

research , each reader of a formal specification would be

able to informally ve rify that its specification sat- is—

fies the properties the autho r claims for it. There-

fore , with each use of ~ specification of the library,

our confidence in the correct rt e of the specification

w i l l  j u s t i f i a b l y  increase .

To answe r each question about the feasibili ty of a

library of formal module specifications , we have given

special  a t t e n t i o n  to techn i ques t h a t  ar e  a l r e a d y

available in software practice and could be ad apted to

these particular questions regarding the feasibilit y of

a librar y, (rather than spend ing effort on developing

yet a n o t h er  lang uag e or a n o t h e r  me tho do log y~ . Since

• fo rma l ~pec ifications are so hard to create and demand a

• of t h i n k i ng abo ut desi gn w h i c h  is r a t h e r  new to most

• individuals , our focusing on fami liar softwa re

• techniques that could be adapted to the problem s of such

a l i b r a r y  has  the  a d d i t i o n a l  b e n e f i t  of m a k i n g  the

l i b r a r y  f a r  more  p r a c t i c a l  and u s a b l e .

-.. • — -—--55.—~~~ —— —  -. .5. — —5. — --5— — 5-— -  
~~~~~~~-— — . -- - —•


—20—

3. Issues

There are f i v e issues that must be resolved to

determine the feasi bility of a li b rary of formal d es ig ns

of sof tware modules: how to re tr ieve items from the

l i b r a r y , whether a few prototypes fo r a g iven applica-

t ion wi l l cover the vast m a j o r i t y of p os s ib i l i t i e s fo r

that application, wha t a lib rary item should consist of ,

whether the formal specifications will be understand-

able, and whether they can be wri tten in a way as to be

easi ly m o d i f i e d .

For each of these issues , we describe their signi—

• ficance in this Lection. Details of the methods used in

answering these questions are given in section 4; except

for the question of retrieval which is answered in 3.1,

all other questions are answered in section 5.

3.3. Re t r i eva l

C lea r ly , r e t r i eva l from the l i b r a r y is a c ruc ia l

quest ion; yet i t Is a most d i f f i c u l t one. One class of

data base techniques is oriented to storag e and re—
-

• t r ieval of ind ividual fields from records satisfying

particular properties. For instance, a company might

have a file of employee record s with one record per

employee, each record consisting of fields such as name,

social secur i ty number , address , b i r t h d a t e , depa r tment ,

s t a r t i n g date wi th the com pany , present sa la ry , etc .

Each f i e ld represents fac tua l in fo rma t ion about the per—

son or en t i ty represented by a record . Typical

_i—. —

~~~~~rn ~~~~~— 
.
~~~~~~ 

—
~~~~~~

—
~~~~~ 

—-5-
~~~~



—21—

r e t r i e v a l  f o r  suc h a da ta  base m i g h t  i n c l u d e a command

suc h as “ L i s t  a l l  employees I n  our  m a r k e t i n q  depa r tment

who e a r n  m o r e  t han  S25 , 000. ” There are w e l l  d e f i n e d  and

researched t echno log ies  f o r  suc h d a t a  base s , I n c l u d i ng

r e l a t i o n a l  d a t a  bases , h i e r a r c h i c a l  ones , a nd CODA SYL

d a t a  bases.

The e n t i t y  in  ques t i on  f o r  our  l i b r a r y  or  d a ta  base

is a m o d u l e  specification. Unfortunately, wha t a user

of the library would like to know about one Is not

charac terizable by a set of facts , as In  the e x a m p l e

men tioned above. Rather , a designer wants to know the

func t ion , purpo se, or mission of a given module and see

what the  closest match to his/her need is.

This is analogous to the user of a library wanting

all books or journal articles related to a specific need

or topic. Just as In the case of bibl iographic materln

al , there is one dominant question: “Find all module

specifications (or books in the bibli ographic case) that

address the followinq need (or topic in the case of

• b i b l i o g r a p h i c  r e t r i e v a l )  .“

Consequently, the relevant data base techniques are

those for bibliographic retrieval. Given this analysis ,

we decided r a t h e r  e a r l y  in  the g r a n t  pe r iod  not to in-

ve s t i gat e  t h i s  ques t i on  f u r t h e r  f o r  the simpl e reaso n

tha t  so many  peopl e a re  studying the prob lem of b i b l i o—

g r a p h i c  r e tr i e v a l  t ha t  t h i s  e f f o r t  would bet te r  be spent

on issues sole ly  re la ted  to module  s p e c i f i c a t i o n .

For r e t r i e v a l  purposes , we t h e r e f o r e  recommend

~~~~ -5- 
- -‘--.5-

.
- ‘- -

~~~ 

- .‘—, - 
~~~ gj 5 --.5 -~~ ---- — -5. — - -— 

.
• —5-—--—- -- —~~~~~-- .5~~~~-.—- ~— --5-- —---5—5-5-—--- .55

— 2 2 —

us ing k e y w o r d s to de scr ibe the pu rpose of t h e modu le .

3.2 Pro to type s

Closely r e l a t ed to the prob lem of r e t r i e v a l is the

fo l lowing c r u c i a l question: for any par t icular applica-

t i o n need , w i l l t h e r e be a small number of prototype s

which cover most of the variations possible? The ideal

would be t h a t a h a n d f u l of pro to type s f o r a g iven need

would cover the m a j o r p o s s i b i l i t ie s , so t h a t the

desig ner can quickly ascertain which , i f a n y , f i t s best .

If t he r e a r e many prototypes necessary for each appl ica-

tion, then the time spent analyzing each one w i l l make

using the library prohibitive.

3.3 What to s tore

The term “d e s iq n ” covers many aspects of s o f t w a re

development , rang i ng f rom (a) partitioning a system In to

modules and p rec i se ly d e f i n i n g the I nt e r f sc e of each

modu le , to (h) d e f i n i n g the d e t a i l e d con t ro l s t r u c t u r e s

of a procedure or a l g o r i t h m using a prog r am des ign

language . Of the products which r e s u l t f r o m the various

c ies tqn a c t i v i t i e s, which should be stored ? Could a l l be

m e a n i n g f u l l y s tored? Could program s impl ementing a pa r-

ti cular design be stored as well?

Fur the rmore , what k ind s of d o c u m e n t a t i o n can he

provided w i t h each of the pro to type m o d u l e de s igns so

that a user of the l ib r a r y can q u i c k l y d i sca rd ones t h a t

do not f i t h i s/h e r need s and concentra te on only a few

- -~~~~

—23-.

f o r I n — d e p t h stud y’

3. 4 U n d e r s t a n d a b i l i t y

The fo rmal designs stored must be under~- tandable.

Even if the pr evious three issues are satisfactorily

solved , a l i b r a r y of f o r m a l d e s i g n s of m o d u l e s w i l l be

useless unless the fo rmal specifications are understand-

able . The user of the l i br a r y mus t be a b le to under-

s tand the s p e c i f i c a t i o n s in o rde r to dec ide whether the

des ign meets h i s/h e r need s and to s u c c e s s f u l l y i n t e g r a t e

it into the rest of the system of which the selected

m o d u l e is a p a r t . The modu le mus t be i n t e g r a t e d into

the system both a t the d e s i g n level and at the impl emen-

tation level .

Unfo rtuna tely, understand ability of formal design

specifications Is the overwhelming problem wi th the.

specific ation lanq uages available. Consequently, we

hav e concentrated most on this one issue .

3.5 M o d i f i a b i l i t y

Given tha t the most a p pr o p r i a t e s p e c i f i c a t i o n is

found , i t may not be a p e r f e c t ma tch to the des igne r ’s

needs. In t ha t case , the more easily the specif ica tion

can be m o d i f i e d to su i t those need s e x a c t l y , the be t t e r .

What t echnique s a re there to write specifications which

a re e a s i l y t a i l o r e d to meet a sl i g h t l y d i f f e r e n t need?

— f.— - .5 — -~~~~~~~~ • - ~
._.. ~~~~• -- --—

~ ~~ ~~~~~~
-

~~~
- 

~~~~~~~~~~~~~~~~


4. Method used in studying the f i v e questions

Our method has been to s p e c i f y as m a n y modu les as

possible to build up experience upon which to suggest

answers to the five questions. Stud y of these examples

prov ides the basis of- our conclusions. The examples

f e l l in to two general classes: data structures and text

edi tors.

— Commonly used data structures were chosen for

several reasons. F i r s t , they a r e c r u c i a l In v i r t u a l l y

a l l prog r amming a p p l i c a t i o n s ; hence , they would have to

be a part of the proposed library. Second , the

• o ve rwhe lming m a j o r i t y of modu le specifications appearing

in the literature are just those data structures.

T h i r d , they are simpl e enough tha t we could specify

several during the grant period; because of their sim-

plicity they would be easily understood by anyone unfam-

ili ar wi th the fo rmal language SPECIA L, (Roubine and

Rob inso n, 19Th), which we used for our specifications.

Text ed i tors were chosen because they represent a

r e a l i s t i c a l l y compl ex a p p l i c a t i o n wi thout be ing i n t r ac t -

able in the time available.

For each application considered , we tried to con-

ceive of all meaningful vari ations that wo uld a r i s e

wi t h i n tha t appl i c a t i o n . Any s i gn i f i c a n t d i f f e r e n c e in

the functional capabilities of the module was considered

a m e a n i n g f u l v a r i a t i o n .

For a l a s t — i n - - f i r s t — o u t s torag e structure , we

spec i f i ed two modules: a stac k from which one could

~~~~ 

.

- I 
- -

--5—- -— -~-----
-5

~~ 
- -5. - -5  — --- -~~ -5



-25-

read value s from only the last item stored , and a stack

which additionally had a movable pointer into the stack.

Any value designated by the pointer could be read , hut

not  m o d i f i e d . ( T h i s  v a r i a t i o n  is u s e f u l  in  i n t e r a c t i v e

• debugging aids to recursive progr amming languaqes such

as Al gol , Pa scal , API , and L i sp ,  for the proqrammer can

then e x a m i n e  the  sequence of p rocedure  c a l l s  when an

error occurs.)

For a first—in—fIrst—out storag e structur e, we

specified four variations: a normal queue where read ing

occurs at only the front position of the sequence , a

priori ty queue , and two character streams. In a priori-

ty queu e, the first entered of the largest values

(highest priority) is read or rem ov ed f r om the sequence

before any others; no other values can be read . Charac—

ter stream s are very useful abstractions of input an~
-

• output ; for they enable the details of synchronizing

input/output operations to be hidden in the module rath-

er than forcing all prog r am s to be aware  of the  means  of

s y n c h r o n i z a t i o n .  The bas ic  o p e r a t i o n  of one of the

character stream s is c h a r a c t e r  o r i e n t e d ; f o r  the other

version, the basic operation was oriented to blocks of

c h a r a c t e r s  or l i n e s.

The ub i qu i tous  t ree  was ano the r  appl ic a t i o n  which

we spec i f i ed . ‘No variations , the b inary t ree and gen-

eral t ree , seem to cover a l l  logica l  v ar i a t i o n s .  Thoug h

we spec i f i ed  a b i n a r y  t r ee , we d id  not get  to the qen—

eral tree. One might wonder why a thread ed tree is not

- -~s.5.s~~5. 55S — -. ~~~~~~ -.5 -~~-
—.5- —~~ - -5.  _~~~ ____~-.,_____. —



— 5- 5-5.---- —5. — ——~~~~~~~
--— -5 - -55.5.- --- —~~~~~ - -5-  - 5 — ——- - —--5~~~~~—---- 5. —5-

— 2c—

a third logical variation. The reaso n is simple: a

thread ed t ree is an impl ementa t ion  of a f a s t  means  of

pe r fo rm i ng t ree  t r a v e r s a l,  an o p e r a t i o n  on t rees .  Co n-

sequent ly ,  the  s p e c i f i c a t i o n  of b i n a r y  t rees  i n c l u d e s

th ree  o p e r a t i o n s  fo r  ino rder , posto rder , and preorder

traversal; the d etails of how the traversal i s perfo rmed

(perhaps via thread links) is not properly part of the

s p e c i f i c a t i o n, f o r  it would violate the info rmation—

h i d i n g  p r i n c i ple.

For tex t ed i tors , we found thr ’~e logicai.  al terna-

t ives .  One has o p e r a t i o n s  o r i e n t e d  to adding , de l e t i ng ,

or  mov i ng cha rac te r s ;  a small , basic subse t o f the

o p e r a t i o n s  of TECO , a po pular  ed i to r on the DEC series

of machines , was specified . Ano ther module specified

has opera tions oriented to lines and line numbers; a

basic subse t of the commands of SOS, another popular.

edito r on DEC machines , was specified . The th•ird ex am-

ple is an edi tor whose operations a r e  o r i en t ed  to mov i ng

a curso r on a CRT screen and e d i t i n g  on the screen; NED

( B il o f s k y , 1977) ,  an edi tor running under the UN IX

opera t ing  system , was used as a pa t te rn  of the f u n c t i o n —  -

al c a p a b i l i t i e s  of suc h sys t ems.

• For each of the modules specified , several tech—

niques were used to check the correctness of the specif—

icat ions .  (By “ correctness’ of a s p e c i f i c a t i o n, we mean

tha t  i t  spec i f i e s  e x a c t l y  the p roper t i e s  d e s i r e d .)  One

was to use an a u t o m a t i c  tool , the s p e c i f i c a t i o n  hand le r

fo r  SPECIAL (R oub ine  and Robinso n , 19Th) .  T h i s  checks

-• _.. 



5-5.5-_S - 5 5-  5-—~~~~~~ - —
~~~~~~ ------ - -5- .~~. — 5-- —5-- - 5- - --  .5 ,

-5-—’ . ••— - —. 5.- - - - —

—27—

for syn tactic correctness of a specification. Since

SPECIAL is a strongly typed lang uage (every expression

has a type suc h as IN TEGER , BOO LE AN , e tc .) , the syst em

can check that the types of each expression always agree

• w i t h what they should be. (Due to an oversight , the

p r i o r i t y queue was never r u n th roug h the s p ec i f i c a t i o n

h a n d l e r .)

A second check was for someone o ther than the au-

thor to scrutinize the specification for anything that

seem ed to d isag ree wi th the author ’s claims ; this is

l i k e a w a l k t h r o u g h .

Third , a quick impl ementation correspond ing to the

prototype was mad e in a very high level lang uage (LISP).

(An impl ementation of the third text ed itor was not

started due to the termination date of the grant; all

other modules were impl emen ted .) T h i s provided a con~
cre te system for testing the functional capabilities of

the module; it of ten uncov ered specifica tion errors not

found by the previous two methods. The implementations

took remarkably little time ; by using a very high level

language one could trad e the performance characteristics

of the impl ementation for vas tly reduced prog rammer :
time. Consequently, the final module we checke d in this

way took only two to three days for one programmer to

impl ement, even tho ug h i t
-

was the c h a r a c t e r — o r i e n t e d

text ed itor , a significant , realistically compl ex

module . Fu r thermore , we found significant regularity in

the impl ementation of most types of expressions

L~ .—~-- —-~~~~~~~
- —i- .

~~~
- - 

~~
—-- 

~~~~ ~~~~~
_ •-— —-— • —5----— - -5.—- -- —‘ - - -

- . —~~~~~~~
_ _~ - ~~~~~~~ —-——~-- --—

- ~~

-28-

spec if ied in SPECIAL. Th i s suggests t h a t a s i g n i fi c a n t
proportion of each impl ementation could be done automat—
ically by a software tool .

‘—5.—-- ‘-—..~~~~
—

~~~~
—- — .5 

~
- ---. -5. -.5- 5.— —5. .—• ——5-— -— .5. 5— ——- — 

-.5- _____._g~~~
.-
~~~~~ ~~~~~~~~

- - .5 — -

5.- -
— 5 . 5 . .5-5• 5-~ 5 - •~~~~~~ 55- -5 •- 5 - 5

— 2 9 —

5. Deta iled r e su l t s
-

In section 3, we isolated five questions about the

feasibility of a library of formal desiqns of software

modules. Section 4 presented the empirical stud y per-

formed to answer the questions. One question , how to

retriev e Item s from such a library, wa s answe r ed in sec-

tion 3. Our results on the remaining questions are

d e t a i l e d h e r e .

5.1 Pro to types

i i For any p a r t i c ul a r appl i c a t i o n , w i l l a h a n d f u l of

pro to type s cover most of the possible modules to meet

tha t need ? If more than a h a n d f u l a re need ed for any

particul ar need , p- he designer will have to spend too

much time analyzing each one to find the best for

h i s/he r needs.

Our expe r i ence In w r i t i n g many s p e c i f i c a t io n s Is

— very encourag i ng ; however , it is simply Insufficient to

answe r the question conclusively.

In the area of da ta struc tures , two to four proto-

type s seem suff icient to cover the var i ous significant

al ternatives. For instance , for a stack , or last—in—

first—out storag e structur e, the two a l t e r nat i v e s were a

stack allowi ng retrieval of values only at one place

(the “top”) and a stack allowing retrieval of values

from any position designated by a movable pointer.

Al thoug h c e r t a i n d e t a i l s of each s pe c i f i c a t i o n

m i g h t be chang ed by the des igner , d e t a i l s suc h as

L
—

- ~~~~~~~~~~~~~~~~ 5 - b-. _
~~_~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

- . 5- - - - ~~~~~~~~ _~~~~~~~~~~~~~~~ _

whethe r t r y in g to read from an empty stack causes an

e r r o r or not , a r e not s i g n i f i c an t enoug h to w a r r a n t

storing additional prototypes. Rather , the autho r of

the specifica t ion in the lib rary can includ e in the

documentation notes to the readers (designers) about

details that might he modified . In fact , our documenta-

tion for each exampl e includes that.

In addition to the area of data structures , our

exampl es deal t wi th med ium—sized software tools , suc h as

text ed itors. (By software tools , we mean software that

serves as an aid in writin g other software.) Though

there was only enoug h time to stud y the one appl ication

area of tex t ed i tors , our e x p e r i e n c e was ve ry encourag—

ing. Thus, we cannot sta te conclusively that for all

classes of sof tware tools , a handful of prototype s will

largely cover all va r ia tions , but we suspect that thig.

wi]] . hold t rue .

For instance , there are a vast variety of tex t ed i-

tors available. However , they seem to be cla s s i f i able

into three categories. The first category is text ed i-

tors whose opera tions are orien ted to inser tion and -

d e l e t i o n of c h a r a c t e r s r e l a t i v e to a c u r r e n t p o s i t i o n .

Line numbers may not be used at a l l ; r a t h e r , one moves

the p o i n t e r d e f i n i n g the c u r r e n t p o s i t i o n to ind i ca t e

where editing is to occur. TECO (Dig ital Equipnent Cor—

pora tion, 1972), a DEC produc t, is an exampl e of this

class. The second category is text ed itors whose opera—

tions have a sequence o f line numbers as an argument and

/

I’
I.-

-- -5 .—

- 5.— ----—--—.— ,—--- -
‘-

~~~~~~. — S -- •~~~~-~~ - ~~~~~~~~~~~ ~~~ 5-5- .- —-5-. — 
- •—~~— — -•-—-~~~~~~

- 
~~~~—.—.-.~~~

-—-— 5.— ~~~~~~~ __1& - ‘•‘

— 3 1 —

which are therefore oriented to operations on lines.

SOS (N a t i o n a l I n s t i t u t e of Hea l th , 19 7 7) , ano the r DEC

produc t, is a par t icular l y r ich exampl e o f this class in

t ha t the user may leav e the line—oriented mod e and move

to a c h a r a c t e r — o r i e n t e d mod e on a rang e of l i n e s . The

t h i r d . ca tegory is tex t ed i to r s whose o p er a t i o n s a re

b~sed on viewing a CRT screen as a window into the file,

where editjnq can take place. Editing occurs wi thin the

window r e l a t i v e to the p o s i t i o n of a c u r s o r . NED (B i —

lo f s ky , 1976), is an example.

Almost a ll g e n e r a l — p u r p o s e t ex t ed i tors can be

classified into one of the three categories . (One ex—

cep t ion is the s p e c i a l — p u r po s e ed i tors created for edit-

ing LISP p r o g r a m s (Sa n d e wa l l , l97~~) .) However , t h a t

does not prove tha t three pro totypes wi ll cover mos t

applications , un l ess one fo l lows these pr inciples i~
creating the specifications for the library.

1) Cer tain details o f a spec ific at ion

will vary given the environment in which

the module is to be used . Select a con-

s i s t en t set of de c i s i o n s f o r the specif i -

cation in the library. As muc h as is pos-

sible , local ize each such detailed dcci—

sion in a s u b d e f i n i ti o n of the specifica—

tion; in this way, a user of the lib rary

can m o d i f y the a r b i t r a r i l y chosen d e t a i l

just by chang ing the subdefinition . (One

of the ex t r eme ly u s e f u l f e a t u r e s of

_~~~~~~~~
_ J~ .’h~. - - • . _~~~~~~• — - •

~~~~~~~~~~~~~ .5.— — • --  -——- i— —-— .~~________ — ————-- - —— 



- - - 5 .  - - . 5  ——5.—-- —~~~~~ ,-—-——-—--.—‘.- • .5 •1

—32—

SPECIAL is that the lang uage provides many

mechan i sm s for making such subdefini—

tlons.~ Itt the doc umenta t ion , a l l  details

which are arg uable must be clearly ind i-

cated .

2) In specifying a new entry for the

libr ary, avoi d differences tha t are not

fundamental to the logical , functional

capabilities of the module. Those differ-

ences would m u l t i ply the  number of e n t r i e s

— fo r  a qiven application in the library

without adding any new abilities. For

ins tan ce, in specifyi ng text editors , we ~~~~~~ - -5 • • 
- - —

did not define a user command language ,

for there are many legitimate syntactic

variations , each of which will be of vary-

ing value to different user communities .

3) The autho r of a new entry for the

l i b r a r y  should  s p e c i f y  as many  lo g i c a l l y

different, primitive operations as can be

imagined. A designer, af ter selec ting a

s p e c i f i c a t i o n  f rom the l i b r a r y ,  can delete

operations from the interface not need ed

in his/her environment. This, of course ,

assumes t ha t  each o p e r a t i o n  at  the  inter-

face was d e f i n e d  us i ng i n fo r m a t i o n — h i d i n g

as stated in p r inc i pl e ( 1 ) .  For ins tance ,

- . 5 - .  -~~ - —.-~ ---..---- .5- —.5 -.5 — .5——- —5..-. 5. — ——--.5-- — .5—- - ‘.5— ‘- --_-~~~—~



.5 — . 
—

r 
-•

~~~~~~~~~

our specification of a line—oriented edi—

tor was patterned after the functional

capabilities of SOS. The operations

correspond ing to the alter mod e, where the

user can modify a rang e of lines using

character—oriented operations relative to

a po in t e r , can e a s i l y be rem ov ed .

In conclus ion , our experience is too limited to

determine whether for all applications , onl y a han d fu l

of prototype specifications will cover almost all varia-

tions in modules for the particular applicati on. Howev-

er , the th ree p r i n c i p l e s ab~ove d i d e n a b l e us to spec i fy

a handful of prototype s successfully covering most anti-

cipated need s in the application area of text ed i tors

and in the class of a p p l i c a t i o n s of d a t a s tr uc tur -e s .

T h a t f a c t is q u i t e encouraq i nq .

5.2 What to s tore

For any g i v e n m o d u l e s p e c i f i c a t i o n to be added to

the lib rary, what should be stored ? The functional

spec ification? A hierarchical design for impl ementing

the module? A complete program? Furthermore , wha t

kind s of d o c u m e n t a t i o n a re necessary?

Clearly, the abstract , formal specifica tion of the

i n t e r f a c e of the module mus t be stored , f o r t h i s is cen—

tral to hierarchical design of a larg e software system .

The s p e c i f i c a t i o n of the modu le ’ s i n t e r f a c e d e f i n e s each

f u n c t i o n a l c a p a b i l i t y of the module , s p e c i f y i n g the

- ~~ —~~~~~~ -5- ~~~~_ ~~~~~~ ~~~~~~~~~~~~~~~~ ~-—~~~~ - -
-

~~~~
——-5-

~~~
.. -—

~~~~
.. 5- 

~~~~~~~~~~ 
-
~~~~~~ 

- .5— --
~~~~~~~~


.5 ——- -5. - -

~~~~ ~‘ T ~
’
~~~~~

5-

— 34—

arguments of each func tion c all , and the effect of any

opera tion or function at the interface of the module.

Of course , this info rmation is exactly what is necessary

f o r the independent i m p l e m e n t a t i o n and use of modu les

according to the info rmation—hiding principl e (Parnas ,

1972) . F u r t h er m o r e , the s p e c i f i c at i o n of the module

interfaces is necessary f o r embedded computer systems.

Thus , the fo rmal spec i f ica tion o f the module’s

interface must be includ ed , and we have therefore con-

centrated our research on t h i s. Yet , coul d one store an

implementation as well? In general , any modul e of sig—

nificant size , when implemented would itself be

hierarchically broken down into modules that together

implement it. Furthermore , there would normally he

several a l t e r n a t e wa ys of h i er a r c h i c a l l y - defining

modules to impl ement the one of interest . Thus, once

the designer has sel ec ted a module speci f ica tion meet ing

h i s/he r need s , a second selection must be mad e from

several a l t e r n a t e h i e r ar c h i c a l des igns impl ementing the

module. There is no technical problem to being able to

specify the h i e r ar c h y , f o r SPECIAL , as wi th o ther

spec i f i ca t ion lang uages , pe rmi t s the formal d e f i n i t i o n

of a h i e r a r c h y i m p l e m e n t i n g the f u n c t i o n a l capab i l i t i e s

of a module as well as the fo rmal d e f i n i t i o n of those

func t iona l c apab il i t i e s .

The diag ram bel ow summarize s this. Associated wi th

each module s p e c i f i ca t i o n M , there wo uld be a few

h i e r a r c h i c a l desi gns HD f o r impl ement ing i t .

4

- . 5 _5-_~~~~~ .5

- - -~~~~~~~~~~
-

-~ -~~~~ ~~~~~~~~~~~ .
-- .5.- -.5-—-— -- 5-5I~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~ - ‘5-~~~~~~ ~~~

-.5 -.5----
~~~~~

—. 
- 

-- .5-- — - ~~~~~~~~~~~~~~~ ‘-5.~~~.’--5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~ 9IIII~~

/i \
HD1 HD2 HD~

It is poss ib le technically; however , the designer

must c o n s i d e r each a l t e r n a t i v e desi gn a f t e r se l ec t ing a

g i v e n m o d u l e . The t r u e pa y o f f would com e i f not on ly

the h i e r a r c h i c a l des ign could be stored but also pro-

grams cor respond i ng to I t .

Aga in , even for a single hierarchical design, there

w i l l in general he several s i g n i f i c a n t , a l t e r n a t e pro-

grams impl ement ing i t . Given a m o d u l e ’s s p e c i f i c a t i o n ,

the d i f f e r i n g hierarchical designs for i t and the var i -

ous program s Impl ement ing each design will of fer various

t rad e o f f s in compu t ing time required , memory used , and

other computer resources required . In other words, t he

perfo rmance and com putational need s of the various pro-

gram s make the alternatives meaningfully different. As

an exampl e of this , even for a task as simpl e as sor ting

a sequence of i tem s , t he re are several competing algo—

r i t hm s , suc h as quic ksor t, heapso rt, mergesort , bub—

blesor t , and insertion sort. Each has advantages and

disadvan tages due to d i f f e r i n g pe r fo rmance and memory

-

I r e q u i r e m e n t s . Given the e n v i r o n m e n t , the t rad eo f f s

among the a l g o r i t h m s can be resolved to selec t a par t ic-

ular prog ram . Thus, we have the si tuation described in

the figure below. For each module M , there will be a

few associated hierarchical desiqns HD. For each

- ~‘ ~~~~~~~~~ - ...iL.
- ---5.-

.
— -5—--. —.5— __.___ .5_S_ _S -~~~ ~~— .5 s.-~~~~~.-

_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ .5

— 3~~—

h i e r a r c h i c a l des ign , the re w i l l be a few prog r am s P

associated impl ementing modu le M.
/

.5

.

HD HD / HD

(~~~ P P AP~~~11 1m~ 21 2m2 ni nm~

It is t echn ica l ly f ea s ib l e to includ e w i t h the

func t iona l s p e c i f i c a t i o n of the module ’s i n t e r f a c e vari-

ous h i e r a r c h i c a l des igns and correspo nd i ng programs

i m p l e m e n t i n g -the module . However , s ince the number of

impl ementations tha t may need to be stored fo r any

modul e could be relatively larg e, developing a reaso n-

ably compl ete library i nc lud ing i m p l e m e n t a t i o n s as well

could take many years . Ho wever , the l i b r a r y wo ul d be of
/

• g r e a t value to des igners jus t wi th the module i n t e r f a c e

spec i f i ca t ions as the a l t e r n a t i v e programs fo r each

modul e a re added Slowly.

Fur thermore , even wi th a compl ete library, som e

repr ogramming wo ul d alwa ys be necessary. The reaso n is

that the modul e specification M itself may oftentimes

need slight modifica tion due to varying environments in

which the modul e is to be used . T h i s w i l l r e q u i r e

modifica tion of one of the library ’s program s

• = .5 -- 5-
—

- --— -~ ~~~~~~~~~~~~~ ~~~~~ -~~~~ ~~ --~~ —— -5~~~~~~ - ’~~ -—~~~~~ ~~~~~~~~~ ~~~~~~~

impl ement ing I t as w e l l . For t h i s to be feasible , each

prog r am stored would have to be very well structur ed and

very wel l documented .

To repeat , in this study we hav e concentr ated ex-

c l u s i v e l y on the f e a s i b i l i t y of b u i l d i n g a l i b r a r y of

modu le s p e c i f i c a t i o n s M , d e f i n i n g the i n t e r f a c e of a

modu le .

What d o c u m e n t a t i o n must be s tored wi th these modu le

s p e c i f i c a t i o n s P4’ Detailed documentation must he stored

in the fo rmal s p e c i f i c a t io n I t s e l f so t h a t a commen t is

wi th the express ion i t is de s c r i b i n g . Our thoughts on

such commen ting appear i n sect ion 5.3. Additionally, a

shor t h i g h — l e v e l d e s c r i p t io n is c r u c i a l to the e f f e c —

t iveness of the l i b r a r y so t h a t the des igne r may q u i c k l y

a s c e r t a i n whe ther a modu le s p e c i f i c a t i o n is rel evan t to
.5

his/her needs. The designer must be abl e to quickl~i

e l i m i n a t e ones t h a t a re not close to the need so tha t

he/ she can focus a t t e n t i o n on two or t h ree that are the

most~ promis ing . Otherwi se , the l i b r a r y wo ul d bog

des igne r s d own on dec i s i ons t h a t should be mad e q u i c k l y.

We hav e found six types of information that seem

valua b le for quickly decid ing on the relevance of a

module specification. One is a list of keywords

d e s c r i b i n g the purpose of a modu le . A second item is a

d e s c r i p t i o n of the purpose of the modu le and the k ind s

of need s i t f i l l s . A t h i r d i tem is a summary descr ip-

t i o n of each class of f u n c t i o n a l c a p a b i l i t i e s the sys tem

has.

-.5 —-- -.5-- - —5 . 5 . - - -‘-i- —‘~~~—-- ---- - —.5-— .5- —5.—-- - ~—

-5.

F o u r t h , the k ind s of decisions not mad e by the

module a re descr ibed ; these a re Impl e m e n t a t io n dec i s i ons

— which wo uld hav e to be mad e a f t e r se lec t ing a modu le ,

when the cod ing phase begins. These decisions , whi ch

are l e f t open by the s p e c i f i c a t i o n of the m o d u l e ’s in-

ter face , are a direct measure of how easily the software

can be modified dur ing its life cycle. This is because

the dec i s ion is mad e at impl ementation rather than at

design, and because the resul t of the decision is iso—

lated in one module. Therefore , each decision is easily

reversed durin g the system ’s l ife cycle by modi fyi ng

only the one module (rather than hav ing to modify many).

For instance , in specifying a text ed itor , we would

wri te in this sec tion, (which we have called “Info rma—

tion Hidd en”), that a decision to use array storag e,

linked li sts , or other alternatives to store the file

being edi ted , wo uld have to be made when progr amming of

t h i s modu le begins .

Fif th, specific references , suc h as tex ts and jour-

nals , if avai lable , should be g iven descri bi ng various

impl ementations , algorithm s, and analyses of them for

use when programming begins. And last , the author of

the specification must inc lud e al l ways that he/she

anticipates that the specification might require modifi—

cation to tailor it to specific needs. Of course , som e

details of the specif ica tion will he ra ther ar bitrary ;

these must be pointed out so that one specification can

serve for many slight variations.

- .5 .5 -.5— — . --—.5 ———.5 .5— .5—— ——5 —.5—— - 5- ——--. .5- - -S 5..5. ~__S~~.5~__5 . 5__~~~. ~5__ .- ~__555 5&.5


~~~~~ UUIUII U U ! U U ! fl
~~~~ 

.5. — ..5— -.5--- ~~~~~- - - -.5--- ~~~~~~~~~~~~ - - .5

39

5.3 Understandability

The fo rmal spec i f i ca tio n o f a module M mus t be

understandable if it is to achiev e its purpose , f o r i t

acts as a contrac t between desiqners and proqramminq

team , statinq ex actly- what the prog ramming team ’s pro-

duc t must do (P a r n a s , 1977a) . If a contrac t canno t be

understood , it serves no purpose. However , the under-

standability of formal specifications in a library be—

comes even more crucial , for if the designer canno t

understand the alternative specifications , how can an

i n t e l l i g e n t choice be mad e among the a l t e r n a t i v e s ? Co n-

sequen t ly , our research has conc entrated most on t h i s

single question.

Our r e su l t s a re in two par ts : reasons why formal

speci f ica tions have been d i f f icult to unde rs tand .and

specific suggestions on making them understand able.

Researchers in the area of formal module specifications

and abstract data types generally agree that they are

d i f f icul t to understand , though the d eq ree of dif ficul ty

is a rgued .

We have found several reasons for the d ifficulty of

und ers tand ing fo rmal specif ica tions , particularly as

compa r ed to n a t u r a l l a n g u a g e sp e c i f i c a t io n s .

I) Natural language specifications usually

do not c o n t a i n the detail that fo rmal

s p e c i f i c a t i o n s cia. Th o ug h t h i s is a m aj o r

reason tha t n a t u r a l languag e is

.5 _ ._~~~
_ _ _ p_5._ ~~5

—40—

i n a p p r o p r i at e for modu le s p e c i f i c a t i o n ,

the necessary, added d e t a i l in a fo rmal

s p e c i f i c a t i o n makes them h a r d er to

unders tand . Li skov (1977) agrees , s t a t i n g

on p. 13—5 , “R i g o r o u s i n f o rmal s pe c i f i c a — - .5

t i o n s a r e probably just as difficul t to

cons t ruc t as f o r m a l ones; Info rmal specif-

ica tions appear easier to construc t be-

cause they are usually incomplete.”

i i) N a t u r a l l anguage is used by each per—

son daily; thus , a na tural language

speci f ica t ion has myr lads of concepts

alread y defined and familiar to us to

succinc tly state what a module does. For

ex ampl e , the concepts of a sorted se—

quence , a po in t e r , and a l i n e of t ex t , a r e

all well—known and are referred to wi thout
.5

f u r ther expl a n a t i on . (Yet , the advantag e

t h i s g ives to u n d e r s t a n d a b i l i t y is simul-

taneously a ser ious drawback to na tu ra l

l anguage s p e c i f i c a t i o n s, s i n c e the no t ion

raised in each perso n ’s m i n d need not be

the same.~ Because fo rmal s p e c i f ic a t i o n s

are so new , the re is no correspo nd i ng body -

‘

I
’

of de f ined conceptc which have been t augh t

us and which have been f r e q u e n t l y used ~~

us. T h e r e f o r e , concepts suc h as sorted

order must be d e f i n e d in the

- .5—-- --—— . —.5—— — -5——
~~~~

______ -- ~~~~~~~~~~~~ — -.5 — - - 
-——-.5 — 5.~~ .55 ~~~~~~~~~~~ — 5-~~~~ -‘i-



- 

.5 -- .5--- .—. — --—- --.5.5.5.. ______

— 41—

s p e ci f i c a t i o n , thus  add ing  to what must be

understood in the s p e c i f i c a t i o n .  Of

course , a l i b r a r y  of suc h d e f i n i t i o n s

wou ld  p rov ide  a bod y of  past expe r i ence  to

stud y and use just as in  n a t u r a l  l anguage .

The formal definitions are unambiguous and

pr ecise ; t h e r e f or e  the d e f i n i t i o n s  do not

a l l o w  m u l t i p l e , v a l i d  i n t e r p r e t a t i o n s  as

in  n a t u r a l  lang uage.

i i i )  Fo rmal  s p e c i f i c a t i o n s  of modules  a r e

to be abs t r ac t  and cover many  possible

implementations. Not only does the

abs t rac tness  itself contribute to qreater

d i f f i c u l t y  I n  understandability, but the

s e m a n t i c s  of the abs t r ac t  l anguages  is -

neces sa r i l y q u i t e  d i f f e r e n t  than the se-

m a n t i c s  of p r o g r a m m i n g  l anguages , s ince

pr og r amming  l anguages  a re  des igned to

d e f i n e  Impl e m e n t a t i o n  d e t a i l .  Thus , the

focus of a t t e n t i o n  of s p e c i f i c a t i o n

languages  is  of neces s i t y  quite different

f rom prog r amming  l anguages .  The re fo re  the

semant ics  of speci f ica t ion language s is

q u i t e  d i f f e r e n t  t h a n  p r o g r a m m e r s  a re  used

to.

The f o l l o w i n g  spec i f i c  suggest ions  fo r  m a k i n g  fo r-

mal s p e c i f i c a t i o n s  u n d e r s t a n d a b l e  have com e out of our

- — - - -5-- —a----. 



. 5 .  — 5.- -— -. 5----— - .~~~~~~~~~~~~~~ ..-.5.-~~~~~~~~~~~~~~~~~~~~ — - - -~~~~ - -

— 4 2—

research .  There a re  two a l t e r na t e  ~pproaches one could

take to make fo rmal  s p e c i f i c a t io n s  more  under s t and able .

One woul d be to abandon the  presen t  specification

l anguages  and t r y  to fo r m u l a t e  one whose s e m a n t i c s  I s

l i k e  t h a t  of standard programm inq l anq uaqes. Yet , as

( i i i )  s t a tes , t h a t  w o u l d  f a i l  s ince  s p e c i fi c a t i o n

lang uages , because of th~’ir  purpose , mus t  have  a seman-

tics different than programming )anguaqes. A second

approach is to adapt the technique s for organizing

c lear,  u n d e r s t a n d a b l e  program code to the problem of

w r i t i n g  u n d e r s t a n dab l e  formal specifications ; this is

the approach we have taken.

Th e r e f o r e , the sugges t ions  a r e  f a m i l i a r  in prog r am-

ming . Our sugges tions , r a t h e r  than being p l a t i t u d e s,

suc h as “Use comments ,” a r e  s p e c i f i c  g u i d e l i n e s , suc h as

when to inc lud e a comment and what to write. Only ~

summary  of  the  g u i d e l i n e s  a re  presented In t h i s  sec t i on .

F u l l y  s p e c i f i e d  modules  us lnq  these g u i d e l i n e s  a re

presented In Appendices  II t h roug h V and also in

We l schedel ( 19 7 9 ) .

The test of these g u i d e l i n e s  is  whe ther  the module

s p e c i f i c a t i o n s  seem understand able to the reader g iven a

reasonable  amount  of s tud y and some fami l iar i ty wi th the

s p e c i f i c a t i o n  l anguag e SPECIAL . ( A  b r i e f  d e s c r i p t i o n  of

the m a j o r  f e a t u r e s  of  SPECIAL I s  presented in Appendix

I). Appendix It specifies a stack; appendix III , a

queue , and appendix  IV a b i n a r y  t r ee . Appendix  V I s  one

of the th ree  t e x t  ed i tors  s p e c i f i e d . The examples  of a

.5 ~~~~~~~~~~~~~~~~~~~~~~~~~~



- .5. .5—. ----5 - -5-~~~~ -5-5-—- .5

~~~
—- -.

~~~~
—

—43—

stack and a queue a re  in t end ed to p r o v i d e  shor t , s impl e

cases of f a m i l i a r  concepts to a i d  becom ing familiar with

SP ECI A L.

Our g u i d e l i n e s  a r e  as f o l l o w s :

1) Since the specification languages , being

abs t rac t  and nonp rocedu ra l , hav e a s eman t i c s  v e r y  d i f -

ferent from that of most programming languages , one

should choose a s p e c i f i c a t i o n  l a n g u a g e  whose s eman t i c s

draws on concepts common in  programming . For instance ,

one of the strong points of SPECIAL is the familiarity

of many  of i t s  pr i m i t i v e  concepts, i nclud ing func tions ,

a rguments  of a f u n c t i o n , excep t ion  cond i t i ons ,  s ide

e f f e c t s , d e cla r a t i o n s , records , sets , vec tors , rea l s ,

integ ers, and charac ters.

2) Eng lish d o c u m e n t a t i o n  shoul d he p a i n s t a k i n g l y

cons truc ted wi th the fo llow i ng princ iples in m i n d :

a) A h igh  level d e s c r i p t i o n  of the

purpose of a module  wh ich  is fo r m a l l y

spec i f i ed  and a d e s c r i p t i o n  of each

func t i on  a v a i l a b l e  at the i n t e r f a c e  of

the modu le  provides  a genera l  no t ion

or concep tua l i za t ion  for  unders tand ing

the fo rmal s p e c i f i c a t i o n .  Thoug h t ha t
.5 

d e s c r i p t i o n  w i l l  he vague , i ncomplete ,

and ambiguous , i t  conveys a topl evel

v iew around which  the compl ete , unam-

biguous , precise  formal  descr ip t ion

can c r y s t a l l i z e  in to  unders tand i ng in

— - - , - -~~~~~
, 

--- .—-----—— ~-~d’—~~~~.5 - _ _~~ 5.•__ .5- - .5-55_•.5.5 ---5..--.. - .~~~—- - -5-- - .-—---~~~~~~~~~~ —— —— .5-—--- — - —~~~~~ - . 5 ~~~ -=--~~~~~~~



5.-

-44-

the reader ’s m i n d . Of course , the

fo rmal  s p e c i f i c a t i o n  alone  is the

arbiter of all questions about the

modu le .  Such a h i gh leve l  d e s c r i pt i o n

is essential documentatio n for manag e-

ment personnel .

b) In general , formal specifications

w i l l  consis t  of a l a r g e  number  of for-

mulas , some of which can he v e r y  long .

(Consider the examples i n  the  a ppe n-

dices and in We i schedel (1979”,.) Each

fo r m u l a  shoul d be documen ted , prefer-

ably with the documentation Intermixed

in the fo r m u l a s , so t h a t  the  purp ose

and i m p l i c a t i o n s  of each suh fo rmul a

a r e  mad e obv ious .  The reaso n Is sim-

ple: the autho r of the s p e c i f i c a t i o n

when w r i t i n g  down a long formula had

s p e c i f i c  reasons f o r  w r i t i n g  each sub—

formula. Those reasons or impl ica-

tions should be succinctly stated .

The pr i nc i pl e fo r  decid i ng whether  to

.5 i nc lud e a comment f o r  a par ticular

subfo rmul a is whether  i t s  pu r pose and 
.5

implica tions would be obvious to the

averag e reader  wi thout a comment.  To

I l l u s t r a t e  t h i s , f i g u r e  1 is  g i v e n  as

a d e f i n i t i o n  of a f u n c t i o n  sort  which

~~~~~~ —~~~~~~~~~~~~
—-——----

~~~~~~~~~
- - - 

~~~~
.-

~~~~~~~~
——5. -

~~~~~~ 
—-S

~~~~ -- - - - --~~~~~--~~~~~~~ •~~~~~~~~~
5- 5- — .5



_ _ _ _  -

— 4 5 —

r e t u r n s  a sequence b in ascend i ng ord—

er cor respond i ng to the i n p u t  sequence

a. Comments are preced ed by a dollar

sign and are enclosed within

par entheses. Reserve d wor d s of

SPECIAL a r e  typed in uppe r case . The

comments generated by following this

principl e probably enable m os t reade rs

to understand and verify the specifi—

cation even wi thout knowing the cl e—

tailed syn tax or seman t ics o f the

specifica tion lariquaqe.

C) Not only will followi nq (a) and

(b) make formal specifications under—

standab]e , hu t also fol low i ng them

gives  each reader  of the  s p e c i f I c a t i o n

the a b i l i t y  to v e r i f y  t h a t  every as—

pect and sub fo rmula  of i t  co r re spond s

to the author ’s intent. This is an .5

i n f o r m a l  means  of de s ign  v a l i d a t i o n;

f o r  a l i b r a r y  of suc h s p e c i f i c a t i o n s,

the means  is ve ry  power fu l  s ince  more

and more  de s igne r s  w i l l  be read i ng and

verifyi ng a specification as time goes

by.

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
__ ‘;_~~~~~ 5 ._~~ ,

- .. - . ~~~~~~~~~~~~~~~~

VFUN sort (VECTOR OF REAL a) - ‘ VECTOR OF REAL b;

S(Given a sequence of rea l n umb e r s a , a so r t ed

sequence of the same numbers is returned as b in

ascend i ng o r d e r . ’ ,

DER IVATION

SOM E VECTOR OF R E A L b i

$ (h is the pe r m u t a t i o n of a)

LENGT H (b) ~LEN GT H (a) AND

(FORA LL REAL xl (EXISTS INTEGER i :x = a (i l)

S (Fo r every v a l u e x of the o r i g i n a l sequence ,

the fol lowi ng is t r u e)

:CARDINALITY ((INTEGER i~~at j1=x ’I)
.5

=CARDINALITY ((INTEGER k I b (kl =x}))

S (Th e same number of copies of x are in the

o r i g i n a l sequence a as in the resul tan t

sequence b)

AND S(b Is in ascend i ng o rde r)

(FORALL INTEGER i i (l - < = i AND I < L E N G T H (b) ~

: b (ii <b (1+11);

F i g u r e 1

- -~~~~~~
_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_
‘ • 5 .5 - ~~~ 

- _ _ _ _ _ _ _



—47—

(The reader may be tempted to conclud e that our

g u i d e l i n e s  on doc u m e n t a t i o n  are  obvious . The two most

sig n i f i c a n t , most imp ress ive  uses of fo rma l  speci f ica-

t i ons  i n d e s i g n i n g  l a rge  system s a re  Neumann , et.al.

(1 977 )  and Ford Aerospace ( 1 9 7 8 ) ,  both spec i fy ing secu r e

ope r a t i n g  system designs .  Ne i the r  uses comments to the

degree we have advocated , and we feel that both would be

considerably more understandable if comments were added

using our guidelines. Some computer scientists , in

fact, would disagree with our guidelines for using com-

ments , feeling that such comments bias the interpreta-

tion of the specification or weaken It somehow. For

instance , one referee of an early version of We ischedel

(1979) wrote , “The English descriptions play too central

a role.” Clearly, then , our guidelines are not obvious.

We have conclud ed that wi thout these guidelines , format

specifications of larg e system s are almost impossible to

understand . Of course , they do suggest an Interpreta—

tion , one that is critical to understand ing a formal

specification and which is valuable for info rmal verifi-

cation that it specifies what the autho r intend ed .. 
-

Wi thout such documentation there is just as much chance

for misinterpretation of the specification , plus the

added d rawback that  they would not be understand able.

The depth of doc umenta t ion  espoused here and the practi-

cal princ iple for deciding whether to includ e a comment

is a practical contribution of our research.)

3) There a re  several styles of w r i t i n g  even simpl e

-

. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ H: 
- . - ‘

~~~

STRUCT OF (INTEGER namel ; CHAR name2) defines records



— 4 8 —

formal specifica tions. Sometimes a simpl e composition

of the pr i m i t i v e  elements of the l anguag e s u f f i c es  to

d e f i n e  a concept.  R e c ur s i v e  d e f i n i t i o n s  can provide

short , easy to unde r s t and  s p e c i f i c a t i on s .  Anothe r  al— 
.5

t e r n a t i v e  is to use the Eng l i sh  d e f i n i t io n  of the  objec t

as a p a t t e r n  for  a fo rmal defin it ion; this of ten leads

to d e f i n i t i o n s  in  t erms of sets and opera t ions  on them .

In wri ting the specifications for our library, we have

found that the style that seems clearest depend s on the

item be i ng defined. Understandability of the formal

s p e c i f i c a t i o n s  should be an explicit goal of the design

phase . Sinc e there  are  several  s tyles of d e f i n i t i o n

tha t  may be used , w a l k t h r o ua~~~ were  used ~~ us to check

not only the correctness  of a s p e c i f i c a t i o n  but also its

u n d e r s t an d a b i l i t y.  For the three text  ed i tors we have

specifi ed , walk throughs proved very valuable in c rit i~~

ciz ing  both the f o r m a l  d e f in i t i o n s  and the documenta-

tion. Understandability is not eas i ly  a t t a ined . For

each of the tex t ed i tors , a f t e r  completely spec i fying

one , we were able to conceive of a muc h more  understand-

able , but f u n c t i o n a l l y  equ iva len t  s p e c i f i c a t i o n  by sig-

n i f i c a n t l y  chang i ng the styl e of the d e f i n i t i o n s .  We

hav e conc l ud ed tha t  e n t r i e s  fo r  a l i b r a r y  of fo rmal

m odul e specifica tions should be prepa red wi th so muc h

care fo r  u n d e r s t a n d a b i l i t y  t h a t  cast ing away the f i r s t

a t t empt  at  a s p e c i f i c a t i o n  to create  a more

under s t andab le  one is not frowned upo n. W r i t i n g  c lear

n o n f i c t i o n  rece ives  tha t  muc h a t t e n t i o n ;  so should

--.5 .5 —- —- 5.-- - -. 5 -  ~~5.5.____ -5 _____ — .5 .5 --



creating a specification to reside in a library of

m o d u l e  s p e c i f i c a t i o n s  f o r  repeated use.

4)  In ( i i )  i t  was s ta ted  t h a t  one reaso n t ha t  for-

mal spec i f i ca t ions are harde r to unde rs tand than Eng lish

ones if the abundance-of concepts alread y defined in

E n g l i s h , but  which  hav e yet to be defined i n fo rma l

languages. Therefore , i n  E n g l i s h  s p e c i f i c a t i o n s, the

concepts may simply be referred to whereas In fo rmal

specifi cations each concept must be defined . This lead s

to three natural conc lusions: (a) a library will add to

the understandability of formal specifications as the

definitions in the library becom e familiar to designers ,

(b) until such a li b rary i s buil t up, modu le  speci fica-

t ions will be ra ther complex as all concepts mus t he .5

explici tly defined in a top—down way, and (c) -the
a.

s p e c i f i c a t i o n  l anguage  should p rov ide  a r i c h  set of

pr i m i t i v e  obj ects and o p e r a t i o n s  on them to a l l e v i a t e

the lac k of concepts p r e v i o u s l y  d e f i n e d . The exampl e of

figure 1 i l l u s t r a t e s  t h i s ;  the  d e f i n i t i o n  woul d be muc h

shor te r  and c l ea re r  i f  a concept pe r m u t a t i o n ( a ,b) were

a l r e a d y  d e f i n e d  in the l a n q u a q e  or in the l i b r ar y .  For

tha t  m a t t e r ,  the concept of a sorted sequence Is so corn—

mon , that i t s  precise  d e f i n i t i o n  should be pr imit ive to

the specifica tion language.

While we have not Invented “new” ideas for under-

standability , we hav e demonstrated that formal specifi-

cations can be mad e far more understand able just by 

~~~~-~~~~~~ — - - —~~~ - - - .  - - - --—~~ ---  -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- — — — - — ~.—r - .--. .-. --—- - ——.5 —---.-- ---- .-

_
d

— 5 0 —

us ing many of the ideas espoused in s t r u c t u r e d program-

ming . The reader is inv i t ed to check this claim by com-

paring our specifications i n the appendices and in

Weischedel (1979) with those of other authors.

5.4 Modifiability

Can the prototype in the library be mad e modifiable

enoug h so tha t m i n o r changes can be mad e to t a i l o r a

s p e c i f i c a t i o n to a spec i f i c e n v i ron m e n t ~ T h e r e a re two

simpl e technique s tha t we suggest which will make

s p e c i f i c a t i o n s In the l i b r a r y r a t h e r m o d i f i a b l e .

The f i r s t is to s t r u c t u r e the definitions of each

f u n c t i o n at the I n t e r f a c e of a module so that each par—

t i c u l a r d e t a i l tha t m i g h t need m o d i f i c a t i o n is loca l ized

in on ly one s u b d e f i n i t i o n . Then onl y one s u b d e fin it t o n

need be chang ed r a t h e r than the changes be ing spread

th roughou t the s p e c i f i c a t i o n . (T h i s is j u s t the

in fo r m a t i o n — h i d i n g p r inc i pl e being appl i ed to w r i t i n g

d e f i n i t i o n s in a s p e c i f i c a t i o n l anguag e r a t h e r than i ts

original applica tion as a criterion for decomposing

larg e system s into modules.) One of the nice features

of SPECIAL is that several mechanism s are provided in

the l anguag e fo r making s u b d e fin i t i o n s . In a d d i t i o n to
.5

the a b i l i t y to r e fe rence f u n c t i o n s a t the i n t e r f a c e of

o the r modu les , one can crea te subdefini t lons wi thin a

s ing le module purely to l o c a l i z e i n f o r m a t i o n t h a t m i g h t

be chang ed in the modu le ’ s d e f i n i t i o n . One method is

the DEFINITIONS f e a t u r e for d e f i n i n g p a r t i c u l a r

. .5 . - .S . .~~~~~a.a

__ I
-51-

sub fo rmulas of s i g n i f i c a n c e . A n o t h e r is the TYPES

f e a t u r e for d e f i n i n g a compl ex new data type used as

arguments to functions.

A particularly good example of this appears in

We i schedel (1979) where a fo rmal s p e c i f i cat i o n is g i v e n

fo r an u n u s u a l l y soph i s t i ca ted p a t ter n matching feature

fo r s ea rch ing a file. In applyinq the princ i ple, the

toplev el specifica tion of the search fea ture precisely

defined the lines that would he found and that those

l i nes wo ul d be r e t u r n e d in o rder of a ppearanc e in the

f i l e . The syntax of the p a t t e r n lang uage, and t he r e fo r e

what it meant for the search procedure to detect an

il legal p a t t e r n , was d e f i n e d in a s u b d e f i n i t i o n l owe r

than the topl evel . The semantics of the pattern

language was also local ized in a subdefinitlon . There-

fore , both the syntax and the semantics of the patterm~

lang uag e for the search could easily be modified for

.5
different user environments.

The second idea was men t ioned e a r l i e r . Namely , the

autho r of the s p e c i f i c a t i o n can a n t i c i p a t e many poten-

t i a l m o d i f i c a t i o n s m e r e l y by a n a l y z i n g what d e t a i l s of

the s p e c i f i c a t i o n are somewhat a r b i t r a r y (i n that the

details will vary depend ing on the environment in which

the module is to be used) . The autho r can list each

d e t a i l which m i g h t need m o d i f i c a t i o n as an inteqera] .

par t of the doc u m e nt a t i o n . As an exampl e , consider a

queue . In a sequent ia l p roq ra mm ing env i ronmen t , an

attempt to remove an i tem f r o m an empty queue is an

.~~
-- --- -.5.5-

.5 ~~~ 5.

r
—52—

error. However , in a multiprocess i ng environment , suc h

a c o n d i t io n is m e r e l y a s iqna l tha t the process r equest-

ing I n f o r m a t i o n should he suspend ed until some other

process adds some th ing to the queue .

These two simpl e pr i nc i ples w i l l make the proto—

types in the l i b r a r y r a t h er modifiabl e.

.5
a.

I

- - . 5- . --~~~~~.- -~~~~~~~~
—

~~~~~
. - --  —5.-

.5— .5— 5.,-. 

-53-

f .  Related W o r k

There a re  several areas  of re la ted work .  The

f i r s t , of  course , is research in  a des ign  methodolog y

us ing  the i n f o r m a t i o n — h i d i n g  pr i n c i ple. Parnas (197c)

demonst ra tes  how m o d u l a r i z a t i o n  of the  type assumed here

can be used to define a family of closely related

sof tware systems , thus making maintenance and mod ifica-

tion of software during their life cycle muc h easier.

Parnas  ( 1977b) shows the relation of formal specifica-

t ions of modules to the special probl em s of embedded

computer systems. Ne umann (1977)  and Ford Aerospace

( 1978) are  the most significant systems designed to date

us i ng fo rmal s p e c i f i c a t io n ;  both a re  opera t ing  systems

whose des igns  hav e been f o r m a l l y  prov ed to m a i n t a i n  
- .5

secu r i t y .  - 
-

A second , re la ted area is research in  s pec i f i c a t i o n

l anguages to support d e f i n i n g  a module ’s i n t e r f a c e  in-

dependent of its impl ementation. This is frequently

referred to as abstract data types in the literature.

Liskov and B e r z i n s  ( 1977)  provide a survey of th i s

research.  Ambler , et.a] . . (1977) presents a specif ica-

t ion  lang uag e which is very  s i m i l a r  in semant ics  to the

one we have used . Algebraic  l anguages hav e the same

purpose, though having a quite different semantics.

Ex amples a r e  presented in Gut tag , et .a l.  (1978) and Par—

nas (1977b) . Yet , a third class of specification

lang uages is represented in the ideas of Baizer  and

Goldman (1979) .

~~~~~~~~~~~~~~~~~~~ ~~~~~~ — ~~~~~~~~~~ . _t 4l .. - 
_
~~~~~ S



-.5 —.5- 
.5- — .5.- — ~~~~~~~

~-1
— !:;4—

A t h i r d  related area of w o r k  is the National

S o f t w a r e  Works (N SW) reported in Crocker  ( 1 9 7 5) .  NEW i s

a l i b r a r y  of  so f t w a r e  tools available on the ARPPI net.

A s o f t w a re  tool is a s o f t w a r e  system used in the

development  of  o the r  s o f t w a r e ;  examples  inc lud e e d i to r s ,

c o m p i l e r s , i n t e r a c t i v e  debugg ing  a i d s , s i m u l a t or s , docu-

ment fo r m a t t e r s , p rog ram v e r i f i e r s , and a u t o m a t i c  test

case g e n e r a to r s .  The purpose of NSW I s  to enable  pro-

grammers to use software tools via the ARPA network ,

tools which would otherwi se be unavailable to them . The

reason software tools would be unavailable otherwi se Is

threefold: (a) the traditional dependence of software

on a p a r t i c u l a r  computer and oper at ing sys tem, (b) the

lack o f faci l it ies , such as s u f f i c i e n t  memory or  in-

teractive system s, a t  the g eographica l  s i t e  of the  pro-

g r a m m e r ,  and (c) the expense of o b t a i n i n g  p r o p r i e t a r y

software. Thus, It shares the notion of a l i b r a r y  to

aid s o f t w a r e  d e v e l o pm e n t ;  ye t , i t s  purpose is qu i t e  d i f —

ferent. Its purpose is to make the e x e c u t i o n  of

s o f t w a r e  tools a v a i l a b l e  to programmers .  The purpose of

a l i b r a r y  as we have envisioned is to make  the fo rmal

specifica tions of module interfaces available to

designers for reuse in developing new software. Formal

specifica tions from such a library would enable discip—

l ined des ign  of l a rg e system s and r i go rous  des ign  val i -

da t ion  by a v a l i d a t i o n  team .



—55—

Bib i  ioqraph y

Ambler , Al len I.., Donald I. Good , James C. Browne ,
W i l h e l m  F. Burger , Richa rd  M. Cohen , Charles G. Hoch,
and Robert  E. Wel l s , U GYPS Y : A La nguag e fo r  Specif ica-
t ion  and Impl e m e n t a t i o n  of V e r i f i a b l e  Program s ,”
Proceed i ng s of the  ACM C o n fe r e n c e  on Lang uag e Design f o r
Re l i ab l e  S o f t w a r e , SI GPLAN N o t i c e s ,  12 , No. 3, March ,
1977.

Ba l zer , Robert  and Ne i l  Goldman , “ P r i n c i ples of Good
Sof tware  S p e c i f i c a t i o n  and t h e i r  I m p l i c a t i o n s  fo r
Specif ica tion Languages ,” Conference on Speci f ica tions
of Re l i ab l e  S o f t w a r e , C a m b r i d g e , MA , 1979.

Bilofsky , Walter , “The CRT Text Ed i tor NED — Introduc—
.5 t i on  and R e f e r e n c e  Manua l ,” Technical  Report  R—2 l 7fS —

AR PA , ARPA Ord er No. 189—1 , Rand Corporation, Santa Mon-
ica , CA , 1977.

Boehm , B a r r y  W., “ S o f t w a r e  and Its Impact :  A Quantita-
tive Assessment,” Datamation, pp. 48—59, May, 1973.

Boehm , B. W., R. K. McClean , and D. B. Ufrig , “Some
Experience wi th Automated Aids to the Design of Large—
Scale Reliable Software ,” IEEE Transactions on S o f t w ar e
Engineering , Vol. SE—l , No. 1, pp. 125—133 , March , 1975.

Boehm , Barry W., “Software Engineering : R & D Trends
and Defense Needs,” Proceeding s of the Conference on
Research Direc tions in Software ‘FeFFii~olog y, Pet~~Wegner , Jack Dennis , M ichael Hammer , and Daniel
Teichroew ( e d s . ) ,  1977.

Crocker , Stephen D. ,  “The National Software Works: A
New Method for  Prov id ing  Sof tware  Developm ent  Tools
Us i ng the ARPANET ,” Meet ing on 20 Years  of Computer Sc i-
ence , Instituto di Elaborazione della Info rmazione del
CNR , Pisa , June 16—19, 1975.

Digi tal Equipment Corporation ,, “DEC System 10: Intro—
duction to TECO (Text Editor and Corrector), Order No.
DE C— lO —UTECA— A —D , D i g i t a l  E q u i pm e n t  Co r po ra t i on , Ma y-
n ard , MA , 1972.

Ford Aerospace , “Secure  M in i c o m p u t e r  Opera t ing  System
(KSOS): Computer Program Development Specifications
(Type B — 5 ) , ” Technical  Report  No. WD L—TR7932 , Fo rd
Aerospace & Communica t ions  Co rpo ra t i on , Palo Al to , CA,
1978.

Guttag , John V.,  E l l i s  Horowi tz , and David R. Musser ,
“Abs t rac t  Data Types and Sof tware  V a l i d a t i o n ,” CACM , 21 ,
No. 12 , 1048—1063 , 1978.

Hami l to n , M. and S. Z e l d i n , “ H i g h e r  Order  So f twa re  —

____________________ - . ---—-.5-.-- .—- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- --—---.-.~~~~~- —.5— -5 .5-. --.5 — - —~--— ---- .-

— 56—

Me thodology for Defining Sof tware , IEEE Trans. on
S o f t w a r e E n g in e e r i n g , SE—2 , No. 1, 9—32 , 1976 . —

Liskov , Barbara H. and V a ld i s B e r z i n s , “An Appra isa l of
Prog r am Specifica t ions ,” Proceed ings of the Conference
on Research D i r e c t i o n s in S o f t w ar e Technolog y, Peter
Wagner , 3ack Denn i s , Mi~~iae1 Hammer, and Daniel
Teichroew (eds .~~, 1977 .

N a t i o n a l I n s t i t u t e s of Hea l th , “ SOS (An Advanced Line—
Or ien ted Text Ed i tor) User ’ s G u i d e ,” Comp. Center -

Branch , Div. of Computer Research & Technoloqy, Na t ional
I n s t i t u te s of Heal th , Bethesd a , MD , 1977.

Neumann , Peter G., Robert S. Bo ye r , R i c h a r d ‘1’. Feiertag ,
Karl N. Lev itt, and Lawrence Robinso n , “A Provably
Secure Opera t ing System : The System , Its Appl i ca t ions ,
and Proofs ,” SRI Projec t 4332 , F ina l Re port , S tanfo rd
Research I n s tit ut e , Menlo Park , CA , F e b r u a r y , 1977.

Parnas , D. L . , “On the C r i t e r i a to be Used in Decom po s-
ing System s in to Modules ,” CACM, Vol. 15, No. 12 , pp.
1053—1058 , December , 1972.

Parnas , D. L., “On the Design and Developm ent of Prog r am
Fami l i e s ,” IEEE T ransac t ions on S o f t w a r e Eng inee r ing ,
Vol. SE—2 , No. 1, pp. 1—8 , Ma r ch7 l91~~.

Parnas , David L . , “Th e Use of Precise S p e c i f i c a t i o n s in
the Developmeflt of So f twa re ,” I n f o r m a t i o n Processing — 77 ,
B. G t lc h ri s t , (ed.) , N o r t h — H o l l a n d Publ i shin a Company7
New York , l97’a.

Parnas , David I.. , “Use of Abstract Interfaces in the
Development of Sof tware fo r Embedded Computer System s ,”
NR L Repor t 8047 , Naval Research Labora to ry , Washing to n ,
D.C. , June 1977b.

Roubine , Ol i v i e r and Lawrence Rob inson, SPECIAL Refer—
ence Manual, Technical Report CSG—45, Standard Research
Institute , Menlo Park , CA , August , 1976 .

Sandewall , E.,, “Prog ramming in the I n t e r a c t i v e Environ-
ment : The LISP Exper ience ,” Computing Surveys 10 , No. -

H 1, 35—72 , 1978.

Te i telman , W a r r e n , “Interlisp Reference Manual ,” Xerox
Palo Al to Research Center , Palo Al to , CA , 1975.

We ischedel , Ralph M., “A Tutorial Exampl e on Writin g
Unders tand able Fo rmal S p e c i f i c a t i o n s of Sof tware
Modules : An Extend ed Abstract ,” Proceed ings of Micro—
Delcon, IEEE Pub l i ca t i on No. 79CH 142 6—6 C , IE E E , In c.,
New York , NY , 1979.

— . 5- - - , -~ __________

- - .

—57—

Append ix I

This section is written to help the reader under-

stand a s p e c i f i c a t i o n w r i t t e n in SPE CIP~L (S P E C i f i c a t i o n

and A s s e r t i o n La ng uage) Ro ub ine and Robinso n , (1976) .

The d i s cuss ion of SPECIAL w i l l not encompa ss al l of the

lang uag e ’s f e a t u r e s . The e x p l a n a t i o n is in tend ed as a

g u i d e in unders tand ing the examp les wh ich accompany this

report.

The design of a l a r g e s o f t wa r e system requ i r e s

b r e a k i n g the system in to component parts called modules .

Parnas (1972) describes a c r i t e r i o n ca l led the

information—hiding princ i pl E for deciding how to decom-

pose a system into modul es. Accord ing to this design -

p r i n c i p l e , any d e c i s i o n which may need to be m o d i f i e d

d u r i n g the system ’ s l i f e cycle should be local i zed in a

s ing le modu le . In tha t way , if the resul ts of any deci-

sion impl emented should be chang ed dur i ng the system ’s

l i f e cycle , only the one correspond ing module must be

chang ed , thereby g r e a t l y s i m p l i f y i ng m a i n te n a n c e .

To achiev e th i s , a designer mus t specify the inter-

face of the module compl etely enough that any other

module or any user program can cal l the module and know

prec ise ly what the modu le w i l l do. Ho wever , the i n t e r —

face must be speci f ied in such a way that other modules

or program s do not depend whatso ever on how the modul e

pe r f or m s the task requested . SPECIAL Is a lang uag e

designed specifically for these goals. To implement

suc h a modul e , one w r i t e s a set of closely re la ted

- -

.5
_ _ _ _ _ -

-,

—5 8--

p rog ram s and data structures confo rm i ng to the interface

spec i f i ed.

One can v i e w such a modu le as an a b s t r a c t mach ine ,

abs t r ac t in the sense that its implementation is unknown

to other modules , and abs t rac t in the sense tha t it is

mos t probably implemen ted in so f twa re ra ther than

hardware. SPECIAL is based on the analog y of an

abstrac t machine . A real machine , suc h as a particular

computer , Is a lways in some s ta te , represented by the

contents of the CPU reg i s te rs and the contents of main

memory. Similarly, a module or abstrac t machine is
.5

always in some state , represented by a group of values.

One can have any por tion of a computer ’s state printed ,

f o r i n s t ance , output of the value of any main memory

loca t ion , of a qenera l reg is te r , or of the program

coun te r . By the sam e token , SP E(~IAL le ts a designer

spec i fy f u n c t i o n s ca l l ed VF UNs which out put or r e t u r n

the va lue of any of the g roup of va lues fo rm ing i ts

present s ta te . A computer also has opera t ions which ,

given the current state , change the state; for instanc e,

an ADD instruction on the PDP—ll takes the sum of the

contents of two memory locations and stores it back in

one of the memory loca tions , thereby chang ing the state
-

of the m a c h i n e . In the same way, a SPE CIAL module has a

number of o p e r a t i o n s (cal led OFUNs) at i ts i n t e r f a c e

which chang e the s tate of the abs t rac t m a c h i n e or

module , g iven i ts c u r r e n t s t a te , by chang ing some of the

va lues compr i s ing to c u r r e n t s ta te .

I~~~~k .
_ _ _ _ _ _ _ _ _ _ _

.5- — .5 — - -~~, —.5.-— .5-—— - — - .5 —5.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . —



-5.-- . 5 5 .-—5.~~~~~~~
. .5 .,

—59—

The heart of a module specification in SPECIAL,

therefore , is a list of functions available at the in—

terface. There are several other parts to a specifica-

tion , which are not as central as the list of functions.

Each specificatt.on describes some module of a

s o f t w a r e  sys t em . SPECIAL ’ s reserved wo rds (such as

MODULE , TYPES , DEFINITIONS and IS)  a re  denoted he re  by

capi tal l e t t e r s .  A modul e is preceded and fol lowed by

the words  MODULE and END_MODULE . The name of the pa r-

t i c u l a r  module immediately follows the word MODULE . The

remainder of the specification is broken up into para-

graph s or  sect ions , each b e g i n n i n g  wi th a rese rved wo rd

suc h as TYPE S , DECLARATIONS , PAR AM ETER S, DEFI N ITI ONS and

FUNCTIONS . The paragraph s a r e  op t iona l . T h e r e f o r e, the

s t r u c t u r e of a modu le  is as fo l lows :

MODULE <modul e name > 
-

TYPES —

DECLARATIONS

RAM ETER S

DEFINITIONS

FUNCTIONS

END MODULE

Comments may a ppear throug hout each modu le .  A

L ________ .- - — - S  I~~l s .  ~~~~~~~ - .~~~~~~- -.5 - - - - - 



comment is  preced ed by a “ S”  and is <-~elineated by match-

ing left and ri g h t  parentheses. Comments have no effect

on the meaning  of the s p e c i f i c a t i o n  but onl y serve as an

aid to understand ing .

The best way to read a modu le  is to stud y the

PARAMETERS sec t ion  f i r s t  fol lowed by the FUNCTIONS.

DEFIN ITIONS, TYPES and DECLARATIONS parag raphs should be

referenced as need ed . Comments at the beginning of a

specific ation will suggest an alternative pl an when it

seem s appropriate .

The s pe c i f i c a t i o n  l anquag e d e f i n e s  obj ects and

o per a t i o n s  on them . Associated wi th each obj ect is a

nam e and a type . The type of an objec t d e f i n e s  a set of

leg a l  va lues  tha t  the obj ect may have .

Primitive types are  d i s j o i n t  sets of p r i m i t i v e

values which may be either pr edefined or desiqnators?

Predefined types includ e BOOLEAN, INTEGER , REA L and CHAR

(character) . A desig nato r type is a class of names for

user—defined objects. This new class of objects is

d e f i n e d  by a p a r t i c u l ar  modul e and can on ly  be created

or modified using func tions in that module .

New type s can be formed by a pplying type—

construc tors to the p r i m i t i v e  types. The type— 
.5

construc to r VECTOR OF crea tes  a type which is a vec tor

(or  rand omly accessible sequence) of obj ects f o r  a g iven

type . For exampl e , the type VECTOR _OF CHAR is the set

of a l l  p oss ib le  sequences of c h a r a c t e r s .  Another  type—

construc to r is STRUC T_OP , wh ich  d e f i n e s  a record .

- - - - - - . I:



3) The re are  several styles of w r i t i ng  even simpl e

STRUCT OF ( I N T E G E R  n a m e l ;  CHAR n am e 2 )  d e f i n e s  records

consisting of two fields; the first contains an Integer

and may be accessed by the name namel. The second field

con ta ins  a cha r a c t e r  and may be accessed by using name2.
- 

- SET OF creates  a type which is a set of objec ts  of a

g i v e n  type .

The purposes of the TYPES paragraph are explained

wi th the followi ng example.

TYPES

graphs: DESIGNATOR ;
sequence: VECTOR OF INTEGER;

As a resul t of t h i s  TYPES paragraph , a new primitive

data type known as “cira phs” is introduc ed . Since it is

a DESIGNATOR , its values com e from a unique set of

names. In additlen , the nam e “sequence” is associated

wi th the type specification VECTOR OF INTEGER. —

The objects defined by the specification language

have a scope as well as a nam e and a type. Once an

object has a nam e and a type associated with it , the

scope dictates which parts of the modul e may reference

that name. The DECLARATIONS paragraph is one way to

associate a nam e wi th a data type . Furthermore , the

scope of that name will be global , i.e. its type will be

the same throughout the entire module.

DECLARATIONS

graph s digraph , cyclic;
INTEGER i

“Digraph” and “cyclic ” are both objects of type “g raph s”

.5-. _________



-—5. - . 5

—~52—

and “ I ”  is now declared as an INTEGER.

The PARAMETERS p a r a g r a p h  is  used to g i v e  an obj ec t

a va lue  when the m o d u l e  is i n i t i a l i z e d . The value is a

cons tan t  w h i c h  woul d rece ive  a p a r t i c u l a r  v a l u e  o n l y

a f t e r  impl e m e n t a t i o n  of the  m o d u l e , when objec t code is

generated . Pa r amete r s  a r e  q iobal  and can t h e r e f o r e  be

re fe renced  throug hout the m o d u l e .

PARAM E TE RS

INTEGER max number of_graphs;
$(The  maxTmum allowable number  of “ g raph s” )

“Ma x_ number _of _graph s” can be used th roughou t  the modu le

to ensu re  t ha t  the total  number of “ graph s” never

exceed s tha t  va lue .

The DEFINITIONS para g raph is purely f o r  the con-

venienc e of the designer and reader. It is a macro

facili ty. The nam ed object, when it is used in the

s p e c i f i c a t i o n , is repl aced by the  p a r t i c u l a r  express ion

which  i t  represents .  For exam pl e,

DE F I N IT IONS

REA L square_ root ( R E A L  x ;  REAL t o i l e r)
IS $ ( R e t u r n s  the  square  root  of  a number , x , w i t h i n  a .5

g i v e n  t o l l e r a n c e  t o i l e r . )
IF x < O OR t o l l e r < = O

THEN ?
ELSE SOM E REA L r I tr*r_ t o l le r < .x  AND

r *r+ tol le r) ax ;

The nam e of t h i s  p a r t i c u l a r  d e f i n i t i o n  is 
.5

“ square_ root . ” The v a l u e  d e f i n e d  by It has type REAL.

The l i s t  f o l l o w i ng the nam e c o n t a i n s  the fo rmal  arg u-

ments .  Each time “square_ roo t” Is used it must be

.5 - - ,-~~- 
-.5- ---- ‘-.5 ~_:L 

• ------—--- —---k- _~~~~_i:-i



LIE- 
- ‘ - ‘

~~~~~~ 

- _ ‘ -
~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~
;3-

i m m e d i a t e l y fo l l owed by a l i s t of a c t u a l ar q umen t s t ha t

agree in number and type . Us i ng “square_ root” causes

the exp re s s ion f o l l o w i nq the word IS to be t e x t u a l l y

s u b s t i t u t e d f o r “square_ root.” “Square root ” can he

r e f e r r e d th roug hout the e n t i r e m o d u l e .

(- It is apparent that the use of the DEFINITIONS

p a r a g r a p h cart extend beyo nd convenience . It can cut

down on er rors when d e f i n i t io n s a r e long or used repeat-

edly . In a d d i t i o n , should the d e f i n i t i o n of

“ square_ root” be chang ed , I t is chang ed - in one pl ace

r a t h e r than in each pl ace i t i s used .

The SOME cons t ruc t used abov e w i l l be discussed

l a t e r . For anyone f a m i l i a r w i t h a h i g h level p roqr am—

ming l a n g u a g e , the “ square_ root” d e f i n i t i o n is r e a d ab l e

wi th p r a c t i c a l l y no f u r t h e r expl a n a t i o n . The o n l y ex-

ception is the symbol “?“ , which represents the unique

value “undefined .” “Square_root” evaluates to “unde-

fined ” when a square root o f a n e g a t i v e number is m di-

cated or if the tollerance Is less than or equa l to

zero.

Ob j ects “ x ” and “ t o i l e r ” do not have to be dec l a r ed

in the DECLARATIONS p a r a g r a p h . An obj ect may he bound

to a type when i t i s used . For “ x ” and “ t o i l e r ” , the

.5
scope Is the definition of “square root.” It is not

important while read ing a s p e ci f i c a t i o n to know the

sc ope of each ob jec t , j u s t it s type . In the exampl e of

“ square_ root” , the b ind i ng of “ x ” to type REAL occurs i n

the d e f i n i t i o n . If t h e r e was no h in d i nq of “ x ” In

—.5— .5 .5. .5 .5 - S__s — .5 - .5

.

S —.5 .—.— —.~~ —--~~~ —.5 — ‘ — ~~
- —

~~~~~ .5 ~~~~~_ t~~
j _  — -



.5 —‘-.5,--- -‘.5------- .5— 
—.5-—- —.5——- . .5-- —.5

“ square root” , the reader  woul d hav e to look e lsewhere

(perhaps  in  the DECLARATIONS p a r a q r a p h ’~ in  o rde r  to dis-

cover the type of “ x” .

SPECIAL describes abstract machines. In other

wo rds i t  p resen t s  the  f u n c t i o n a l  c a p a b i l i t i e s  of a corn—

p u t a t i o n  as o pposed to the impl e m e n t a t i o n  d e t a i l s .  The

las t  and most i m p o rt a n t  pa r agraph  c o n t a i n s  a d e s c r i p t i o n

of the f u n c t i o n s  a v a i l a b l e  a t  the i nt e r f a c e  of the

m o d u l e .  It is e n t i t l e d  FUNCTIONS .

The s ta te  of a modu l e  or  ab s t r ac t  m a c h i n e  at  any

g i v e n  i n s ta n t  is  the value of all objects defined by the

m o d u l e ’s s p e c i f i c a t i o n .  Th i s  s t a t e  changes when at

least  one of the obj ects i t  m a n i p u l a t es  changes .

SPEC IAL ’ s three type s o f funct ions ref lec t thi s view o f

a process . They a r e  VFUN , OFUN and OVFUN . VFUNs (va lue

functlons~ re turn a va lue , but do not chang e the state .5

of the module. OFUNs (operation functions) cause state

changes , but return no value . The last category, OVFUN,

causes a s ta te  chang e and r e t u r n s  a v a l u e .

P i c tu r e a module  at  some level In a h i e r a r c h i c a l l y

des igned system . The f u n c t i o n s  In  t h i s  pa rag raph

desc r ibe  the i n t e r f a c e  between the modu le  and other

.5 modu le s  t h a t  may  r e f e r e n c e  I t .  The on ly  c o m m u n i c a t i o n

to th i s  module  is accom pl ished via the functions.

For each f u n c t i o n , one may  s p e c i f y  c o n d i t i o n s  under

which  i t  is  i n v a l i d  to ca l l  the f u n c t i o n .  These a re

cal led EXCEPTIONS and a re  ana logous  to excep t ion  c o n d i —
‘
.5 t i o n s  or instruction traps on computers; for Instance,

- .5- . -,~-.5- - - - -~~~~~ -~~~~~~~~ - -~~~~~~~~~~~~~~~ - — — -.5 —- r n  ~~~~~~~~~~ —- - — — - - —~~~~~~~~~~~~~~~



.5 

~~~~~~~~~~~

,
‘

_

~~~~~~~~~~~~~~~~~~~~~

_ _ ,-_

~~~~~~~~~

_

~~~~

the division instruction(s ) on most com puters qenerate

an e x c e p t i o n  c o n d i t i o n  on d i v i s i o n  by z e r o .  For the

OFUN functions , which are operations chang ing the state

of a m o d u l e , the  new s t a t e  must  he d e f i n e d  p rec i sely  in

t e r m s  of the  old s t a t e  and the  arg uments  to the new

function; the changes in the various components of the

s t a t e  of the m a c h i n e  a re  g i v e n  as EFFECTS . For the VEUN

f u n c t i ons , which represent components of the state of

the m a c h i n e , the  value must be defined precisely . Some

VFUN f u n c t i o n s  r epresen t  com ponents of the state not

accessible to the user , but  necessary  to d e f i n e  the

s e m a n t i c s  of  o t h e r  f u n c t i o n s ;  these  a re  termed HIDDEN .

(Th e exampl e of a s tack i n d i c a t e s  the need of H I DDEN

f u n c t i o n s .  Th o ug h o n l y  the  top  e l e m e n t,  is  accessible to

the user , the complete state of the modul e depend s on

the whole  sequence of i t e m s stored in the s tack . l

The f o l l o w i n g  exampl e desc r ibes  the c h a r a c t e r i s t i c s

of the  d i f f e r e n t  f u n c t i o n  types.  Al thoug h a b i t  con-

trived , I t will illustrate the main Ideas. The exampl e

defines a sing le “ register.” It can be Initialized to an

INTEGER value , have ano ther INTEGER value add ed to it or

hav e twice its value returned . Assum e that In the
.5 

PARAMETERS paragraph , “max_ register_value ” has been

dec lared  as an INTEGER.  It is  in t end ed to be the max—

imum absolu te  v a l u e  t ha t  can he s tored In  the “ regis-

t e r . ”

FUNCTIONS

VFUN r e q i s t e r(  ) — > INTEGER value ;
$( R e t u r r i s the v a l u e  stored in the “ r eg i s t e r” .)

—

— S 
— -



- --—-.5 -- .- - ~~~~ -- -‘--~~,----~~—-- —5.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _ _ _

—66—

H I D D E N ;
I N I T I A L L Y

v a lu e~ ?;

OFUN load reg is te r  ( INTEGER I ) ;
S (S to res  I in  the “ r eg i s t e r .”)

E XC E PT IONS
max_ req ister _ v a lu e < i ;
max register value<— i;

EFFECTS
‘ r e gi s t e r (  ) i ;

OVF UN add ( INTE GER i )  — > INTEGER v a l u e ;
S(Ad d s ‘ i ”  to the con ten t s  of the  “ reg is te r” and r e t u r n s

the new va lue  as the va lue  of the f u n c t i o n .)
EXC E PTIONS

r e g i s t e r (  )*?;
max, req ister_value<reg ister( )+i;
max reg ister_v a l u e <— ( r e g i s t e r (  ) + i ) ;

EFFECTS
v a lu e — ’ r e g i s t e r (  ) ;
‘r e g i s t e r(  ) =r e gi s t e r (  ) + i ;

VF UN double  ( ) — > INTEGER v a l u e;
$ ( R e t u r n s  double  the  con ten t s  of the ~ reg i s t e r .w )

EXCEPTIONS
reg ister ( )~~?;

DERIVATION
req is t e r(  ) * 2 ;

S.

The f i r s t  f u n c t i o n  is a VFUN cal led “ reg i s t e r ,”

which has no fo rmal arg uments . The va lue  re turned by

t h i s  f u n c t i o n  is an INTEGER as i nd i ca t ed  by the i nf o rma—

t ion  fo l lowi ng the symbol “->“ . “Va l ue ” has been bound

to type INTEGER. The scope of i t s  bind ing is the func-

t ion  d e f i n i t i o n .  Correspond i ng to the d i scuss ion  of the

obj ect “ x” in the exampl e of “ square—root” , “ value ”

could hav e been bound to INTEG ER e lsewhere .

A f t e r  the comment is the reserved word HIDDEN.

VFUNs may be h idden  as the rese rved  word i nd ica t e s  or

v i s i b l e .  V i s ib l e  VF UN s a re  a v a i l a b l e  at  the i n t e r f a c e

whereas h idden  VFUN s a re  not  a v a i l a b l e  ou t s i de  of the

module .  Hidden VF UN s a r e  used by the des igner  for

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 

-

_ v-~~~~
- - - --~~~~~~~~~~

— ~~~—.~
—, -.— ..——.—- .5 .5— ——

—.-- —--———— ..— .-—-. ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 5 -

. 5 . . -- —.5-—---. — —--‘— —--- - — . .--

purposes of d e s c r i p t i o n .

The reserved wo rd INITIALLY indicates that this

VF UN i s p~r im i t i v e . Th i s means t h a t an Initial value for

the VFUN e x i s t s . The I n i t i a l v a l u e f o r “ r eg i s t e r” is

“ ?“ or “ u n d e f i n e d .” A l l of t he pr i m i t i v e VFUNs toge ther

d e f i n e the s ta te of the m o d u l e .

The nex t f u n c t i o n , “ load r eg i st e r ” , i s a n OFUN ; I t

therefore causes a state change. It takes a single

INTEGER parameter. As the comment i n d i c a t e s , the

pa r ameter ’ s v a l u e is to be pl aced into the “ r eg i s t e r .”

The nex t keyword in “ load_ register ” is EXCEPTIONS.

An EXCEPTIONS s ec t ion a ppears in a l l except HIDDEN func-

t ions . They de sc r ibe c o n d i t i on s under which the func-

t ion canno t be ca l led . If any of the s t a t emen t s (excep—

tion conditions) in the EXCEPTIONS section are true ,

then no s ta te chang e t a k e s pl ace and/ o r no va lue i~
re tu rned . As was pr eviously sta ted ,

“max_ reg i ster_value ” is a par ameter which represents the

max imum absolute value storable in “ register.” The two

except ion ~c o nd i t i o n s p reven t an I n t eger which Is ou t s i de

the acceptable rang e from being pl aced In to the “ re g is—

te r . ”

If no exception conditions prevent the function

f rom execu t ing , the EFFECTS sec t ion desc r ibes the s tate

change . In defining a state chang e, we must refer to

the new value s for components (VFUNs) of the state in

te rms of old v a l u e s . Pl ac ing the symbo l quote b e f o r e

the f u n c t i o n nam e “ r eg i s t e r” i s the value in the new

.5
.5’

— .5 - LS ~~~~~~~~~~ _.
- _ ~~~~~~ — — —

—6 R —

state, I.e. the value retur ned by a call to “register”

a f t e r the cal l to load _ reg i st e r . ” Th e r e f o r e , the e f f e c t

of t h i s OF UN is t h a t a subsequent ca l l to “ reg is ter ”

will re turn the value “1” . Note , the new s ta te of the

process is comple te ly represented by the va lue s r e t u r n e d

by a l l ~r i m it i v e VF UNs .

The nex t f u n c t i o n is an exampl e of an OVFUN func-

t i on . “Ac cumula te ” takes one arg ument , an INTEGER , and

r e t u r n s an INTEGER va lue . The comments i n d i c a t e the

e f f e c t s th i s f u n c t i o n has on the state as well as the

value re tu rned . Since th i s func tion is v i s i b l e, there

is an EXCEPTIONS sec t ion . “ A c cu mu l a t e” cannot e f f e c t

the s tate of the process i f the contents of “ r eg i s t e r”

is “ u n d e f i n e d .” This is controlled by the first excep-

tion condition. The second and third exception condi—

tions r e s t r i c t the new v a l u e in “ r eg i s t e r” to he wi thtrr

the acceptable r ange . Except ion c o nd i t i o n s have an o rd-

e r ing : the f i rst is checke d , then the second and so on.

.5
This is unlike the EFFECTS section where all changes

occur s imul taneously . As a resul t of a call to “accum u-

late,” the new value returned by “ reg ister ” is equal to

the value re turned by “ reg ister ” before this function

call plus “I.” Lastly, the value returned is the value

that w i l l be r e t u r n e d by the function “ register” after

the cal l to “ accumula te .”

“Do uble_ reg i s t e r” is the last f u n c t i o n . It is a

VFU N which has an empty arg ument l i s t and r e t ur n s an

INTEGER value . The only exception condition is that the

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~.: -



r — 6 9 —

“register ” cannot be “undefined .” Recall that the first

VFUN “ reqister ” was pr im itive. Unlike “ register ,” the

func tion “double_ reg ister ” is derived (as indicated by

the  keyword D E R I V A T I O N ) .  I ts v a l u e  is d e f i n e d  or

d e r i v e d  in t e rms  of o ther  VFUNs . The va lue  r e t u r n e d  by

“double_ reg is te r” is the c u r r e n t  va lue  of “ r eg i s t e r”

t imes  two .

In conclusion , the three type s o f func t ions ar e

VFUNs ( v a l u e  f u n c t i o n s)  , OFUNs (operation functions) and

OVF UNs ( o p e r a t i o n  and va lue  f u n c t i o n s)  . Each VFUN is

e i t he r  h idden  or v i s i b l e,  depend i ng on whether  i t  is

a v a i l a b l e  o u t s i d e  of the  module .  The va lue  re tu rned

from a VF UN is de r ived  or pr i m i t i v e .  OFUNs and OVF UNs ,

l i k e  v i s i b l e  VFUN 5 , hav e EXCEPTIONS or c o n d i t i o n s  under

which they will not be executed . Should no exception

condition arise , the effects of an OFUN or OVFUN are

described in the EFFECTS section.

A few more  languag e d e t a i l s  must  be explained . The

m a j o r i t y  of SPECIAL ’ s cons t ruc t s  a r e  i n t u i t i v e l y

equ iva len t  to h igh  level language expressions (i.e. IF—

THEN—E LSE) .  The r e m a i n i n g  expressions t h a t  a r e  pa r t i cu-

l a r  to the s p e c i f i c a t i o n  l a n g u a g e  and tha t  a ppear in the

enclosed ex ampl es w i l l  now be described .

As p r ev ious ly  ment ioned , type—const ruc tors a re  used

to bu i ld  new type s from pr imitive ones. Three type—

construc tors  a r e :  VECTOR OF , SET_OF and STRUCT OF.

Vectors a r e  d e f i n e d  expl i c i t l y ,

VE CTOR(2 4 6)

~~~~~~ ~~... ~~._. ~~~~~~~~~~~~~~ —.- —-__ s__.5_. — . 5 . 5  ‘•~~~~~ ‘ ‘ —.—
~~

- ..5 j~~

I

—70—

or i m p l i c i tl y ,

VEC TOR(FOR j FROM 1 TO 3: 2*j) .

Th ese two express ions d e f i n e the same sequence of t h ree

numbers . Note t h at the obj ec t “j ” in the i m p l i c i t vec—

tor need not be declared as INTEGER; t h i s is assumed .

If A is a vecto r , then LENGTH (A) r e t u r ns the number of

e lements in A. The t h i r d e lement in A may be r e f e r e n c e d

by A (3] . -

Sets may be d e f i n e d impl i c i t l y such as the follow-

ing express ion:

(IN TEGER i I i) 3 AND i< ’7 } .

Th i s set con t a in s e lements 4 , 5, 6 and 7 . The symbol

“ I” is read as “ such t h a t . ” The e n t i r e express ion is

read “ t h e set of INTEGER i suc h t h a t i is g r e a t e r than 3

and I is less than or equal to ~~~.
“ CARDINALITY returns

the number of e lements in the set which is i t s operand .

The SOME express ion r e t u r n s any value hav ing a

given property (o r e q u i v al e n t l y , satisfying a given

pred ica t e . For exampl e,

S O M E x I T (x)

t r ans l a t e s as “ some x suc h tha t T (x) is t rue .”

Assume a new t ype called “ record” is d e f i n e d by the

s t a t emen t :

record : STRUCT_OF (INT E GER iden ti f i c a t ion ; INTEGER

value)

“
.5

- -—-.5.——--. .5-— —.5 .5 -.5— ‘-.5-- —-.- —

~~~~~~~~~~~~~~~~~ -~~~~ .5.5-.-.5._-5.. 5._____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ---~~~~~~~~~~~~~~~~~~~~ -- --- ---- ---‘ - ---~~~~~~~~~~~~~



If the object  A i s  of type “ record ,” then the expression

A.va lue  r e f e r ences  the second i tem in the s t r u c t u r e .

A ST R U C T ( l ; 3 )  ass igns  “A” the v a l u e  of a s t r u c t u r e where

A .identification equals 1 and A . v a l u e  equals  3.

A DESIGNATOR is  used to d e f i n e  a set of names to

r e f e r e n c e  e l emen t s  of a new class of objects. The func-

tion NEW appl ies  to d e s i g n a t or s  o n l y .  N E W ( t )  genera tes

a nam e tha t has never been used b e f o r e .  “t ”  must  hav e

been d e f i n e d  as a designator In the TYPES paragraph by

the expression t: DESIGNATOR.

The LET express ion  prov ides  a local d e f i n i t i o n  of a

value . The scope of the d e f in i t i o n  is the express ion

LET INTEGE R j  =

CARDINALITY (IINTEGER k I . .5

- k’~O AND -

k < 5 0 } )

IN

<express ion)

The object  “ j ”  is d e f i n e d  and bound for the duration of

the expression following the keyword IN. (Of course ,

the va lue  of j in the exampl e happens to be 49 . )

Las t ly ,  SPECIAL has an express ion fo r  un iversa l
-

~~~ 
. quantification.

FORALL x I T (x) : U (x)

is read “ f o r a l l x suc h tha t T (x) is t rue , 0 (x) is t rue .”

.5— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -—‘—.5—- —~~~~~~~ -~~~~ -— _ .~~~ .5 -~~ - — —~~~ - —~~ -~~~~~~‘~~~- - ~~—— -~~— . ~~~~~~~~~~~~

—72—

Appendix It
Stacks

A. Keywords : s tack , pushdown , LIFO , LIFO queue

B. R e f e r e n c e s

The concep t of a stack is defined in many t ex t s . One is
chapter three of Fundamentals of Data S t r u c t ur e s , by E l l i s

Horowi t z and Sarta) Sahnj, Computer Science Press, Inc., 1976.
For ideas on implement ing the module , chapters three and four of
the same text present several strategies.

C. Hidden Information

This module hides all decisions about implementing a
s tack . For ins tance , users of the module cannot answer the
f o l l o w i n g ques t ions : ~re the s tacks implemented us ing an array or
l i n k e d l i s t ? Do a l l s tacks share one a r r a y or does each have i ts
own a r r a y ? How many word s , by tes , or bits are used per data
element in the stack ?

D. Description (~ n aid to understanding the definition ; tbough
the definition is the arbi tra tor of all issues or quest ions
ra ised)

This module manages any number of s tacks up to the
implementa t ion constant “ maxs tack s . ” The data s t r u c t u r e
represented by a stack maintains a sequence of items. One can
add an item to the sequence using “push” , which adds the item at
one f ixed end of the sequence. An i tem may be removed f rom the
sequence at t h a t same f ixed end using “pop”, which besides
removing the item , gives i ts value as the value of the procedure
ca l l . One may ob t a in that value without removing the data item
f r o m the sequence via “top.” The only other operat ion is to ask
whether the re are any elements in the sequence or not , via
“ empty. ” The max imum length of any sequence is “maxsize.” For
th i s spec i f i ca t i on, the data items a re in tegers whose absolute
value is bounded by “maxelemen t . ” New stacks may be crea ted and
old stacks released via “crea te_stack” and “delete_stack.” .5

Note p a r t i c u l a r l y tha t the f u n c t i o n “ s t a c k (s) ” is HIDDEN .
Therefore , it can never be called , nor does i t imply an
implemen tation using arrays or sequent ia l memory. It merely
indicates the effects of “push” and “pop” on the sequence of

.5 items. The specification implies that only the element most
recently entered into the data structure may be accessed or

. 5 - .5 -.‘~~~~~~ - . . 5 . 5- - --.5— - — —
.5 .-

——s’ - - ______

‘ ‘-.5 — ‘ — . 5 —.5———— . .5. .5 ~~~~~~~~~~~~~~~~~~ - - - - - ‘— - -~—~
. 5 .

— 7 3 —

removed ; t h i s p rope r ty has led to the phrase “ l a s t — i n — f i r s t — o u t ”
or LIFO.

E. M o d i f i c a t i o n s

Stacks of course do- not have to be sequences of integers.
• The d e c l a r a t i o n s which must be changed for REALS , CH R s , or

whateve r is des i r ed a re marked by comments in the specfication.

For c e r t a i n appl i ca t i ons , one may wish to access any
element in the sequence , but add or delete items at on ly one
fixed end . For this , one may add ano ther func t ion:

VF UN v a l u e (s ; I N T E G E R j) — > i ;
$(random access read of data
items in stack)

EXC EPT IONS
s t a c k (s) a?;
j < l OR j > s i z e (s) ;

DERIV A TION
s t a c k (s) E j i ;

$(Note that value(s;l) is the
first element added to the
sequence, not the last one.)

Another f u n c t i o n one may wish to add to the in t e r f ace is
the numbe r of e lements in a s t ack . “Size ” in the DEFINITIONS
section suggests how to add tha t f e a t u r e .

F. A l t e r n a t i v e s
.5 In some app l ica t ions such as implementa t ions of

p rogramming languages , a pointer into the stack may be desirable.
The po in te r may be used as a local reference point for
se lec t ive ly reading values stored in the s tack or removing many
items simultaneously. Refer to the specification stacki for such
a feature.

I

:~~~~
-
~~~~~

~~ L. ~~ , — —.5- “—~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~ 
—‘—.5———-.. —

~~ 
.5—’———



r

—74—

MODULE stacks

TYPES

stack name : DESIGNATOR ;

DECLA RATIONS

INTEGER i ; $ (  This is for a stack of integers. The declarations
must  be changed for  a d i f f e r e n t  type of da ta  e l emen t . )

stack_name 5;

PARAMETERS

INTEGER max_stack _size $ (  maximum size of any stack) ,
max _number _of _stacks $(  maximum numbe r of stacks permitted),
max_elemen t value S( maximum absolute value storable in

any st a c k )  -

$ (  For a stack of a d i f f e r e n t  data type
than INTEGER , t h i s  d e f i n i t i o n  must  be
c h a n ged .) ;

DEFINITIONS

INTEGER number _of _stacks
IS CA R D I N A L I T Y ( (  s tack_name s f s t a c k ( s)  = ? fl;

INTEGER s ize_of _ s t a c k ( s )  IS L EN G T H ( s t a c k ( s ) ) ;

FUNCTIONS

VF UN s t a c k ( s )  -> VECTOR OF INTEGER v;
$ (  Represents contents of stack s. This declaration of
INTEGER must be changed for a different type of data
element.)

HIDDEN ;
INITIALLY

v ? ;  -

VFUN empty(s) — >  BOOLEAN b; $ (  This function returns true , i f
stack s is empty, otherwise false.)

EXCEPTIONS
s t a c k ( s )  a ?;

DERIVATION
size_of _stack (s) a 0;

~

-.5 .5.- .5- -.5 
—~~~~~~~ ..____.•_ _ -. — . 5— - - -  .~~~ . 5-



.5 —.5——. .5 ~~~
‘ __ ~~~~~~_~ _~~ _~ ~~~~~~~~~~~ —‘—.5- ,-

—7 5—

VF~JN tc’-’~~~ — >  i ;  $ (  Returns the value most recently pushed onto
stack s.)

EXC EPTIONS
stack(s) = ?;
empty(s);

DERIVATION
• stack(s)[size of stack(s));

$(  One might add ano ther derived VFUN which is jus t the
macro s i z e ( s )  so that  the number  of e lements  in
the s tack is accessable.)

OVF UN c rea te  s t a c k ( )  -> s; $ (  I n i ti a l i z e s  a new s t a c k . )
EXCEPTIOIIS

number  of s tacks  >= max number of stacks ;
j  

EFFECTS
NEW ( s tack  n a m e ) ;

‘stack(s) = VECTOR () - ;

OF~JN delete_s t a c k ( s) ;  $ (  Delete  makes  s tack s and its contents
u n a v a i l a b l e . )

EXC E PTIONS
s t a c k ( s )  = ?;

EFFECTS
‘stack(s) = ?;

OFUN push(s; i);
$ (  Push adds i to the stack s, thereby guaranteeii~g thats is not empty,  and m a k i n g  i the element r etu rned  by top
(s).)

EXCEPTION S
stack(s) = ?;
size of s t a c k ( s )  >= max s tack size ;
i < ( 0  — max element va lue )  OR i > max element value ;

EFFECTS
‘stack(s)

= VECTOR(FOR j FROM 1 TO size_of_stack(s) + 1
: IF j <= s ize of s t a c k( s )

THEN s tack  (I) [3 )
ELSE i ) ;

OVF UN pop(s) — > i; $ (  Removes item last pushed onto stack s.)
EXCEPTIONS

stack(s) = ?;
empty (s);

EFFECTS
i top(s ) ;
‘stack (s)
VECTOR (FOR j FROM 1 TO size_of_stack(s) - 1

stack(s) (ji);

END_MODULE 

—~~~~~~~~~ .-.‘--— , - .5’ —.5--—- .5—--— —---.5- .5.-



- . 5—  - — -~~~~~————-~~~~~.5-—— —---- .5 —. .---.- --~~~~ —- - . —--- ~~~~~ -—.- - ~~ - . . _ _

—76—

Appendix I I I
- Queues

A. Keywords: queue , FIFO

B. References

The concept of a queue is defined in many texts. One is
chapter three of Fundamentals of Data Structures , by Ellis

Horowi tz and Sar taj Sahni , Computer Science Press, Inc., 1976.
Chapters three and four of the same text present several
strategies.

C. Hidden Information

This module hides all decisions about how the queue is
represented in memory. For instance , one does not know whether
an array is used , a linked list, or some other structure in
memory. Perhaps each queue has its own memory space , or perhaps
they share a common memory pool. Whether more than one queue
elemen t is packed per word is also hidden. Even though the
specifica t ion appears to imply that the newest element of the
queue enters at the l e f t  end , this is not necessarily trtxe .

D. Description (an aid to understanding the definition, though
the definition is the arbitrator of all issues or questions
raised)

The module manages any number of queues up to
“max_number_of_queues.” A queue is a sequence of data items very I

much like a line of individuals at a bank teller ’s window . Items H
enter the sequence only at the back end of a queue ; “enqueue ” is
the operat ion to add a da ta  ~a1ue to the queue . The first value
placed in the queue is the first to be r emoved ; the last entered
is the last to be r emoved . (This has led to its name as
“ f i r s t — i n — f i r s t — o u t ”  or F IFO. )  “Dequeue ” removes one item from
the queue , similar to the person at the front of a line being the
f i r s t  to leave . “Dequeue ” r e t u r n s  as a value that data item - -

which is removed . To merely  read the value which would be
removed by the next  use of “dequeue ” , the function “fron t” is
provided ; the va lue  r ema ins  in the queue , changing nothing .

Only  one item may be examined in the queue at any t ime .
~ 1so , the r e l a t ive  order  of the elements wi th respec t to one
,no~ her cannot  be changed and is determined solely by the order
i~~ ~‘i i c h  they were  enqueued . 

—-.5- .5- 
.5-.— - -~~~~- -.-.5----- ~~~~~~~~~~~~~~~~~~~~~~~~~~~



— . 5  — ‘ - -.5 —‘-—.5-- -- ’

—77—

To find out whether the queue has any elemen ts in it,
“empty” is used ; it does not change the queue at all. If you
wan t a new queue, “crea te_queue” provide s as a value the name of
a new queue . To release a queue named q, “abolish queue ” is
used.

The maximum sequenc e length is “max_queue_size .” In this
specif ica t ion, all values in the queue are integers whose
absolute value is bounded by “max_el emen t_value .”

Especially note that function “queue(q) ” is HIDDEN. Thus,
one can never r e f e r  to such a f u n c t i o n ; i t  is not  pa r t  of the
interface.  Though, the specification may seem to suggest art
implementat ion using an array, following that thought would lead
to a very inefficient implemen tat ion, causing a shif t of every
queue element with each “enqueue.” In fac t, all that is implied
by the specfication is that the relative order of the queue
elements is exac tly the order in which e lements were enqueued and
that only the item available through “front” or “dequeue ” may be L
read .

E. Modifications

If data values other than integers are desired , several
declarations , which are commented in the specification , mus t be
changed. If a count of the number of elements in a .queue is
desired , “size ” should be made a VFUN r a t h e r  than  i ts pr.esent
status as a DEFINITION.

F. A l t e r n a t i v e s

For certain applications , we may wish to assign some
importance, we ight , or pr i o r i t y  to the elements , and order  them
based on that first , then on order of entry. See the
specification of pr iority_queues for such a data structure.

L ‘~~~~‘ 
-

.5- —.5— — -- —__-.•_L__._ ~~~~ . - ~~~~~~~~~~~~~~~~~~~~~~~~~~



‘ .5 .--—- - - - - - --- - ---‘ .5 ‘—.5.5,--—----,,-—-—-- -.•----— 
--.5’--— --—- -- ‘---“ ,--.5- —

—78—

MODULE queues

TYPE S

queue_name : DESIGNATOR;

DEC LA RATION S

INTEGER i ;  $ (  This is for a queue of integers. This declaration
must  be changed for  a d i f f e r e n t  type of data e l emen t . )

queue_name q;

PARAMETERS

INTEGER max_queue_size $ (  maximum size of any queue )
max_number_of_queues $ (  maximum number of queues)
max e lement  va lue

$ (  The maximum absolute value storable in any queue . For
a queue of a d i f f e r e n t type other than INT E GER , this
defini tion must be changed.); .5

DEFINITIONS

INTEGER number_of_queues
IS CARD INA LI TY({ queue_name q I queue (q) -

= ? });
INTEGER s ize (q) IS L E N G T H ( q u e u e ( g ) ) ;

FUNCTIONS

VF UN queue (q) — > VECTOR _OF INTEGER s;
$ (  This declara t ion  of INTEGER must be changed for  a
d i f f e r e n t  type of data element.  This is the sequence
of elements added to q. The most recen t ly  added
is at queue ( q ) ( l J .  The oldest entry is the last
element in the sequence.)

H I D D E N ;
INITIALLY

s = ? ;

VF UN e m p t y ( q )  — > BOOLEAN b ; $ (  Value is true if queue q is empty,
o the rwise  f a l s e . )  -

E XC E PT IONS
queue (q) =

DERIVATION
size (q) = 0;

— — . 5 —  .5’—— -— —.5 .—~~~--~~~~-————— -.~~~~ —,-‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
.5 .5 .5



‘ - ---.5--. .- -

—7 9—

VFUN f r o n t ( q )  — ,  i; $(  Returns value least recently enqueued or added
onto queue q, and which has also not been
subsequently dequeued.)

EXCEPTIO NS
q u e u e ( q )  = ?;
e m p t y ( q ) ;

DERIVATI ON -

queue(q) Esize(q) I;
$ (  One might add ano ther derived VFUN which is just the

macro s i z e ( q )  so tha t  the numbe r of e lements  in
any queue can be accessed outside of the module.)

OVFUN crea te queue () — > q ;  $ (  Init iates a new queue , re turning the
name of t h a t  queue as the f u n ct i o n ’s
v a l u e . )

EXCEPTIONS
numbe r of queues >a max numbe r of queues;

EFF ECTS 
— —

q = NEW(queue_name);
‘q u e u e ( q )  a V E C T O R ( ) ;

OFUN abolish_queue (q); S ( Makes queue q and any con tents
unaccessable.)

EXCEPTI ONS
— q u e u e ( q )  = ?;

EFFECTS
‘queue(q) ?; -

OFUN enqueue (q ; i);
$( Enqueue adds i to the queue q, thereby guaran teeing
t ha t  q is not empty .  i would  be r e t u r n e d  by f r o n t  on ly
a f t e r  preceding enqueued va lues  have been removed
using dequeue . )

EXCEPTIONS
queue (q )  a
s ize ( q )  )— max _queue_size ;
i < ( 0  — m ax e lement  va lue ) OR i > max _element_value ;

EFFECTS
‘queue (q)

a VECTOR (FOR j  FROM 1 TO s i z e ( q )  + 1
• 

: IF j  > 1 THEN queue (q)(j — 1) ELS E i ) ;

OVF UN dequeue(q)  -) i; $(  Removes i tem least r ecen t ly  added by
• enqueue onto queue q.) .5

- 
- . EXCEPTIONS

qu eue(q)  —
empty (q) ;

EFFECTS
j  a f r o n t (q) ;

‘queue (q)
- VECTOR(FOR j FROM 1 TO s i z e ( q )  - 1: q u e u e ( q ) [ jf l ;

END _MODU LE

.5 

- _ _ _ _ _ _ _ _ _ _ _ _

—‘-.5- -- - . 5 - - —.5 -—.5 _,‘•—~~~~~~~~ ., ‘~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~•~~~~•• ..5 .5— ~~~~~~~~~~~~~~~~~~~~~~~~ .5., ~~~~~~~~~~~



. 5—.  -

—80—

Append ix IV
Trees

A. Keywords: tree , binary tree , hier archy, hierarchical data
s t ruc tu re

B. References

The concept of a t ree  is de f ined  in many texts. One is
chapter f i v e  of Fundamenta l s  of Data S t ruc tu re s , by Ellis

Horowi tz  and S a r t a j  Sahni , Computer Sc ience Press , I n c . ,  1976.

C. Hidden Information

This module hides all decisions about how the tree is
represented in memory. For instance , one does not know whether
an array is used , a linked list , or some other structure.
Perhaps each tree has its own memory space , or perhaps they share
a common memory pool. Whether mote than one tree element is
packed per word as well  as the spec i f ic  a l g o r i thm s  for  p e r f o r m i n g
inorder , preorder  and postorder  t r a v e r s a l s  are  also hidden.

D. Description (an aid to unde r s t and ing  the d e f i n i t i o n , t .hough
the definition is the arbitrator of all issues or questions
raised )

This module manages any number of b i n a r y  trees up to
“max _numbe r of _ t rees. ” A b i n a r y  t ree  is a f i n i t e  set of zero or
more nodes. A non—empty b i n a r y  t ree  has a special node known as
the root .  Up to two nodes can be d i r e c t l y  associated wi th  a
node. They are  called the l e f t son  and the r ightson  of that node.
This node is then designated as the f a the r  and no other node may
be the fa the r  of e i ther  the leftson or r ightson.  Nodes can have
a u n i t  of information associated with them . In this  module the
i n f o r m a t i o n  is an integer that has a maximum absolute value of
“max _value .” F i n a l l y,  the maximum number of nodes on any binary
t r ee  is “max_number_of_nodes.”

A t ree  or its contents  cannot be accesse d direc tly at the
i n t e r f a c e . Two HIDDEN functions are provided in order to
describe the contents of a tree and to reflect the changes which
occur to i t .  They are “ t r ee ” and “ node. ”

The f u n c t i o n  “ c rea te_ tree ” i n i t i a t e s  a new tree . At this
point  the new t ree  con ta ins  no nodes. “Initialize_ root” adds a
root node to an empty t ree . A l e f t son  or r lgh t son  may be
associated with ar-i e x i s t i n g  node v ia  the func t ions

.5— —.5-— - _ __.___ .. — ,~~~~~~~ _ ~~~__a_,’ 
,k ,L.._., _d. JL ’



.5’ - -  - - - - .5 - .- --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
-

—81—

“ i n i t i a l i z e_ l e f t_ son ” and “ i n i t i a l i z e_r ight _son. ”

Each node of a par t i cu l a r  t ree  has an i d e n t i f i ca t i o n
associated with it. The functions “fa ther_of_node ” , “lef t son ” ,
and “right _son ” return the identification for the node Eaving
that relationship to the given one. “Set value ” and
“value_of node ” store and retrieve node values in the tree.
“Exis ts_lef t_son ” and “exis ts_right_son ” are predica tes wh ich
re turn true if a node has a leftson or rightson , respec tively.
To delete a node the func t ion “delete_node ” should be used .
“Delete tree ” will dele te an ent ire tree thereby making it and
its nodes unavailable. Lastly, thr ee func t ions are provided for
tree traversals. The tree traversals visit each node in the tree
exac tly once, re turning the node ident i f iers for each node in the
order visited . The three orders are preorder , inorder and 

.5postorder which  correspond to pref ix , infix and postfix forms of
an expression. The functions are “preorder traversal” ,
“inorder traversa l” and “ postorder_traversa l  • 1I

E. Modifications

Trees, of course , do no t have to con ta in  in tegers  as
values  of the nodes. The aop rop r i a t e  d e c l a r a t i o n s  would have to
be changed .

F. Al ternatives 
~
.

In some appl ications , such as cer tain sorts, the more
general n_ary t ree , as opposed to the b inary tree, is desirable.

— . 5  —-- - .5-— .5



.5 —.5
—82—

MODULE trees -

$ (  It is probably best to s tudy  the spec i f i ca t ion  in the
following order : node_struc ture under TYPES first;
create_ tree and i n i t i a l i z e_ root for  c r ea t ing  a new t ree ;
i n i t i a l i z e  l e f t  son or t n i t i al i z e_r i g h t  son to set up
children ; fa ther _of_node , left_son , an~ right son to .5
find a node having that relationship to the g iven one;
set_value and value_of _node to store and r e t r i eve  values
in the t ree;  and the remaining features.)

TYPES

tree_name: DESIGNATOR ;
nod e_st r u ctu r e :
STRUCT_OF( INT E GE R f a t h e r ;

I?~TEGER value ;
INTEGER lef tson;
INTEGER r ightson);
$(  For a tree holding a different data type other than

INTEGER, the declaration for value must be changed.)
$ ( A node has four pieces of informa tion potentially:
the .identity of the father , the value stored at the node ,
the i d e n t i t y  of a ] e f t s on ,  and the i d e n t i t y  of a r igh t son .
This~ fac t is indicated by our use of the STRUCTure
construct; the specification refers to any of the. four

.5 pieces of informa tion in a structure s by writing s.father
for  the f a t h e r  i n f o r m a t i on , s..value for the value , e tc . )

DECLARATIONS 
.5

INTEGER id , i, j ;
t ree name t ;
node structure n; 

.5

PARAMETERS

INTEGER max_number of trees, $ (  maximum allowable number of trees)
— max _numbe r of _nod es , $ (  maximum allowable number of nodes

on a t ree)
max value

$( The maximum absolute value storable in any node. For a
data type other than INTEGER , this declaration must be
changed.);

LI

- --.5. ’ .5______ — —‘.5 - — --——.5



-.5

—83—

DEF IN ITIONS

SET_OF INTEGER nodes in tree (t)
IS { INTEGER id I node(t , id) -

= ? 1- ;
INTEGER size of_tree(t) IS CP.RDINALITY(nodes in tree(t));
INTEGER number_of_trees -

IS CARD INALI TY({  tree_name t I tree(t) ? });
VECTOR OF INTEGER combine vectors (VECTOR OF INTEGER vi; —

VECTOR OF INTEGER v2;
VECTORThF INTEGER v3)

IS $ (  A vector which is the concatenation of vectors
vi , v2 and v3.)

VECTOR(FOR j
FROM 1
TO LENGPH (vl) + LENGTH(v2) + LENGTH (v3)
: IF j <= LENGTH (vi)

THEN viii)
ELSE IF j <= LENGTH (vl) + LENGT H (v2)

THEN v2 [j — LENGTH(vl)1
ELSE v3 [j -(LENGTH(vi) + LENGTH (v2))]);

VECTOR_OF INTEGER preorder (t; id)
IS $ (  A vector of integers, which represents all node

identifiers for the tree t , in a preorder traversal. id is
the identifier of the root node of the tree.)

IF i d = ?
THEN VECTO~~~~~( )
ELSE combine_vectors (VECTOR(id) ,

preorder(t , node (t, id).leftson),
preorder (t, node(t, id).rightson));

VECTOR OF INTEGER i n o r d e r ( t ;  id)
IS $ (  A vector of integers , which represents all node

identifiers for the tree t, in an inorder traversal. id is
the identifier of the root node of the tree.)

IF i d — ?
THEN VECTOR ()
ELSE combine vectors (inorder (t, node (t, id).leftson) ,

VECTOR ( id) ,
in o r d e r ( t , n ode( t , i d ) .r i gh t s o n ) ) ;

VECTOR_OF INTEGER postorder (t ; id)
IS $ (  A vector of integers, which represents all node

i d e n t i f i e r s  for  the tree t , in a postorder traversal. id is
the ident i f ie r  of the root node of the t r ee . )

• IF id — ?
THEN VECTOR()
ELSE combine vectors(postorder(t , node (t, id) .leftson) ,

p os torder ( t , n o d e ( t , id ).rightson),
V E C T O R ( i d ) ) ;

INTEGER root id (t)
IS $ (  The i den t i f i e r  of the root node for tree t.)

SOME INTEGER i f a the r _of _node( t , i)  = 0;

—.5..- -- -



—84—

FUNCTIONS

VFUN node (t; i) — >  n ;  $ (  Returns the node n in tree t with
i d e n t i f i e r  i . )

HIDDEN;
INITIALLY

node ( t , i )  = ?~

VFUN tree(t ) —> BOOLEAN b; $(  Predicate , which returns true if
tree t exists , otherwise false.)

HIDDEN ;
INITIALLY

FALSE ;

VF UN f a t h e r_of _nod e ( t ;  i )  — > Id ;
$ (  Re turns  the i d e n t i f i e r  for the node which is the

f a t h e r  of node i on t ree t. Returns zero for the root.)
EXCEPTIONS

NOT t r e e ( t );
node(t, i) —

DERIV A TION
node ( t ,  i ) . f a th e r ;

VF UN le ft _s o n(t ;  i )  — > id; $ (  Re tu rns  the i d e n t i fi e r  for  the nod e
.5 which is the lef tson of node i on - t

tree t.)
EXCEPTIONS

NOT t r e e ( t ) ;
nod e (t , i)  — ?~
NOT exists left son (t, i);

DERIVATION
node( t , i ) .l e f t s o n ;

VF UN r ight s o n ( t ;  i )  — ,  id; $ (  Returns the identifier for the node
which is the rightsort  of node i on
tree t . )

EXCEPTIONS
NOT tree (t);

-; node(t , i ) ?;
NOT exists r ight son(t , i ) ;

DERIVATION —

n o d e ( t ,  I )  . r ightson ;

VFUN exists_left son(t; i) — >  BOOLEAN b;
$ (  Pre~ icate which returns true , if node i on tree t has
a le f tson , o therwise  f a l s e . )

EXCEPTIONS
NOT t r e e (t ) ;
node -C t ,  I)  —

DERIVATION
n o d e ( t ,  i) le f t son  —

-
I 

~~~~~~~ .1
—--—.5

~~~~~~~~~
.5 —.5-  —---.5 .5___a ~~~~~~~~~~~~~~~~~~ 

~~~ -.5 a___~~~~~~~ —


—85—

VFUN exis ts_ r i g h t s o n (t ; i) — > BOOLEAN b;
SC Predtcate which ‘returns true , if node i on tree t has
a r ightson , otherwise f a l s e .)

EXCEPTIONS
NOT tree(t);
node(t , i) = ?~DERIVATION
node(t , i).rightson -

=

VFUN value of_node(t; i) —> j;
~

(Returns the stored value of node i on tree t . The type
of i must be changed for a data type other than INTEGER.)

EXCEPTIONS
NOT t r e e - C t) ;
node(t , i) —
node (t , i) . v a l u e = ?;

DERI VATION
node(t , i).value ;

OFtJN delete n o d e (t ; i) ; $ (Deletes leaf node i on tree t.)
EXCEPTION S

NOT t r e e (t) ;
node (t , i) = ?~exists_ lef t_son(t, i);
ex i s t s_ r i gh t _ s o n (t , i) ;

EFFECTS
IF f a t h e r _of _node (t , i) 0

THEN $ (The node is the root node.) ‘node(t , i) = ?
ELSE IF node (t, father_of_node(t ,i)).leftson = i

THEN $ (The node is the leftson of some node.)
‘node (t , father _of_node(t , i)).ieftson — ?

AND ‘node(t , i) = ?

‘
.5 ELSE $ (The node is the rightson of some node.)

‘node(t , fa ther_of_node(t , i)).rightson —
AND ‘node(t, i) ?;

OFUN delete_tree-Ct); S C Deletes an e n t i r e t r e e .)
EXCEPTIONS

NOT t r e e - C t) ;
EFFECTS

‘ t r e e(t) FALSE;
FORALL i I node(t , i) — ?: ‘node(t , i) — ?;

OVFUN create t r e e () — > t ; $ (I ni t i a t e s a new t ree , r e t u r n i n g the
name of that tree as the function ’s
v a l u e .)

EXCEPTIONS
max numbe r of trees <— number _of t rees ;

EFFECTS
t — N E W (t r e e _n a m e) ;
‘tree-Ct) — TRUE ; S C t is now a valid tree_name , but the

t r ee Is empty fo r now)

- .5 .5

_ _ _ _ _ _ _ _ _ _ _ ~~~ “T

—86—

OVFUN i n i t i a l iz e _ r o o t - C t) —> id;
$ (Allows a value , lef tson , or rightson to be
associated with the root of tree t. The value returned
is the identifier for the toot. The father of the root

— is set to ze ro .)
EX CEPTIO NS

NOT tree(t) ;
-

s ize of t r e e (t) = 0;
EFFECTS

LET INTEGER j I j
- = 0 AND n o d e (t , j) ?

$ (j was not in u~e as a node name)
IN ‘n o d e (t , j) = STRUCT(0, ?, ?, ?) AND id

SC i becomes a root since its father is 0. It has no
lef tson , no rightson, nor any value stored at it.)

OVF UN i n i t ia l i z e l e f t s o n (t ; i) —> id;
$(Adds a new node to t ree t, re turning the iden tifier
for that node as the func tion ’s value . The new node is the
leftson of node i.)

EXCEPTI ONS
NOT tree(t) ;
node(t , i) = ?;
exi sts lef t_son t , i);
size of tree -Ct) “-= max number _of nodes ;

EFFECTS
LET IN TEGER j I j 0 AND node (t , j) = ? .5

$ (j was not in use as a node name) .5
IN ‘node(t , j) = STRUCT (i, ?, ?, ?) S C j has a father i;

its lef tson , r ightson ,
and stored value are all
undefined)

AND ‘node (t , i).leftson = j $ (this defines that i has j
as its l e f t son)

AND i d = j ;

-.5’ - -- -.—-~~ -
-

~~~~. ————.5 — .5 .5 
~~~~~~——~~~~-- -.5~~ -~~~ .-.5 -~.5-. .~~ - - - -  _______


—87—

OVF (JN initialize_right_son-Ct; i) — > id;
S - C Adds a new node to tree t, re turning the identifier
for that node as the func t ion ’s value . The new node is the
ri ghtson of node i.)

EXCEPT IONS
NOT tree -Ct);
node(t , i) = ?~ex is t s r i g h t _s on (t , i) ;
size_ol tree -Ct) >=‘ max_number of nodes;

EFFECTS
LET INTEGER j j - = 0 AND node (t , j) = 2

S C j was not in use as a node name)
IN ‘node(t, j) = STRUCT(i, ?, ?, ?) SC i has a father I;

its lef tson , rightson ,
and stored value are all
undefined)

AND ‘node(t, i).rightsort j S(this defines that i has j
-

as its rightson)

AND id j ;

OFUN set value -Ct; I; j) ; $(This mus t be changed for a data type
other than INTEGER for value . Sets the
value of node i on tree t to j.)

EXCEPTIO NS .5
NOT tree -Ct); .5

nod e (t , i) =

~
< 0 — max_value OR j > max_value ;

EFFECTS
‘node(t , i) . v al ue =

VFUN preorder t r a v e r s a l - C t) — > VECTOR _OF INTEGER v;
$(R e t u r n s a vector of integers , which represents al].

node i d e n t i f i e r s for the tree t , in a preorder
t r a v e r s a l .)

EXCEPTIONS
NOT t r e e (t) ;
size of t r e e (t) = 0;

DERIV ATION
preorder (t , roo t_ id(t));

VFUN inorder _ t r a v e r s al (t) — > VECTOR_OF INTEGER v;
S C R e t u r n s a vecto r of integers, which represen ts all
node i d e n t i f i e r s for the tree t , in an inorder
t r a v e r s a l .)

EXCEPTIONS
NOT t r e e(t) ;
size of t r e e (t) 0;

DERIVATYON
— i n o r d e r (t , roo t_ i d - C t)) ;

f l .- ., - - ~~~~~~~~~~~~~~~~~~~~~

VF UN postorder t r a v e r s a l(t) — > VECTOR OF IN TEGER v;
SC R e t u r n s a vector of integers , which represen ts all

node i d e n t i f i e r s fo r the tree t, in a postorder
traversal.)

EXCEPT IONS
NOT tree -Ct); -

size of t r e e (t) = 0;
DERI VAT ION~

postorder Ct , roo t_id-Ct));

END_MODULE

S.

~~~
. --~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~ ‘~~~~ — - -- -. 5~~~~~~~~~~ - — --~~~~~~~~~~~~~~~

...—‘



—89 --

Appendix V
C h a r a c t e r  Or ien ted  E d i t o r

A. Key Words: edito r , text ed itor , c h a r a c ter ed i tor , file

B. References

This module was modeled after TECO, an ed i tor foun d on the
DEC—10 as well as other systems . A survey of on—line ed itors
along with examples can be found in the article On-line Text
Editing : A Survey, by Andries Van Dam and David E. Rice ,
Compu t ing Surveys , Vol. 3, No. 3, September, 1971.

C. Hidden Informa t ion

The module  h ides  a l l  dec i s ions  about  how the ed i tor  is
implemented . For i n s t ance , use r s  of the module  cannot  a s s e r t a in
how the ed i t  f i l e  is stored . Is it in an ar ray , a linked list or
some other data struc ture?

D. Description (an aid to understanding the definition , though
the d e f i n i t i o n  is the a r b i t r a t o r  of a l l  issues or quest ions
ra i sed) .5.

This module represents the functional capabilities of an
editor. It is assumed that an intermediary level for processing
a command systax exists between this and the user. The edit file
is made up of a sequence of charac ters. At no t ime  .can the total
number of characters in the file exceed “max file size. ” A l i ne
is a sequence of charac ter s bracke ted by the implementation
paramete r  “ l i n e_end .” The f i r s t  and last l ines  of a f i l e  are
bracke ted by only one “line_end” and either the beginning or the
end of the file. There are no explicit line numbers. Operations
on the file are relative to a c u r r e n t  p o s i t i o n .

The file cannot be accessed directly. It is only throug h
the HIDDEN func t ion “ f i l e ” that the text may be retrived . This
function is neccessary in order to describe changes which effect
the file. The current position is represented by the HIDDEN
func t ion “poin ter.”

At the onset, the file is closed and uninitialized . The
func tion “open file” must be called before editing operations may
begin. “Open ”~~is a predicate which returns true when the file
has been initialized . “Close_ f i le” terminates an editing
session. 

.5~~~~~___ .5_ t_a, , -__ - ‘-‘ -~~-,,- ____-_



AD—A068 910 DELAWARL W4IV NEWARK DEPT OF COIWUTER AND It*ORMATI—€TC F/S 9/2
TOWARD A LIBRARY OF FORMAL DESIGNS OF SOFTWARE .(U)
1979 R H WEISCHEDEL . L SALSBURG AFOSR—78—3539

UNCLASSIFIED AFOSR—TR—79—0528 Pt
2 0 F 2 END
AO6~~ 

DAn

I PAC



I 0 ~~~~~~

I . I

UIII L~ IIIL~ IIIIU~



—90 —

The only function that allows a view of the file outside
of this module is “display lines.” “Display lines” makes lines
visible relative to the position that the pointer references at
the time of the function call. The remaining functions don ’t
return a value , they only have effects on the pointer and the
contents of the edit file.

The following functions strictly move the pointer. They
are , “move_pointer i characters ” , “move pointer over i lines” ,
“move to beg inning of rile” , “move to end of fileV ana “scan.”
“Move poTnter i ch~ra~ters” moves the ~ointer foward or backward
over characters. “Move_pointer_over_i_lines” moves the pointer
foward or backward over lines. “Move_to_beginning of_file”
positions the pointer to the first character of the !ile , and
“move_to_end_of_file” positions the pointer one past the end of
the file. Lastly, “scan” is used to position the pointer to the
character following a given number of occurrences of a character
string.

The rest of the functions alter the appearance of the file
as well as possibly move the pointer . They are ,
“delete characters” , “delete lines”, “delete entire file”,
“insert~characters”, and “repl~ce.” “Delete ch~racter~ ” and
“delete lines” delete characters and lines from the file,
respectively. The entire file can be deleted via
“delete entire_file.” “Insert_characters” is used to add text to
the edit file. Lastly, “replace” substitutes one string of
characters for another.

E. Modifications

One way to make this editor more robust would be to add a
facility for defining editing macros. In this manner, new
editing pr imitives could be created from existing ones.

F. Pdternatives

Rather than having a pointer into the file , lines of text
could have a reference number . Locations for changes to the edit
file could be specified by using this line number as opposed to
positioning the pointer. See the specification of
line_oriented_editor.

~: ~



—9].—

MODULE character_or iented_edito r

SC It is probably best to study the specification in the following
• order: the PARAMETERS line_end and max_file_size ; the VFUNs file

and pointer; the DEFINITIONS of file size , number of lines,
end_of_line, start_of line , line , anJ current_linel; ~and the• other FUNCTIONS, reading the remaining DEFINITIONS as they are used
in FUNCTIONS.)

TYPES

one_line : VECTOR_OF CHAR;

DECLA RATIONS

INTEGER i;

PARA M ETERS

CHAR line_end ; S( character in the file ind icating the end of a
line)

INTEGER max_file_size ; $( maximum number of characters permissible
in a file)

DEFINITIONS
SC A line is a sequence of characters bracketed by
line ends; the line end characters themselves are not
part~of the line . TEe first and last line of a file arebracketed by only one line_end and either the beginning
or end of the file.)

INTEGER file_size IS LENGTH(fileffl; $( The total number of
characters in the file,
including line_ends.)

• INTEGER number_of_lines
• IS 1 + CARDINALITY ({ INTEGER k I fileUEk] — line_end });

• $( The total number of lines in the file is always one
• greater than the number of line_ends, since line_ends

act as separators between lines.)

INTEGER end_of_i m e  (i)
IS IF i — number_of lines

THEN file_size ~~( The case of the last line.)ELSE SOME INTEGER j I file C) ~j] — line end
AND CARDINALITY( ( INTEGER k I
k < j AND file ()(k] — line_end 1) i — 1;

$( The clause about the CARDINALITY says that there are
exactly i—i line_ends pr ior to position j.)

J 
- ~~-••~~-~~~~.-~~~ ~~~~~~~~

- • •  -
~~



—92—

INTEGER start of_ line(i)
IS IF I — T THEN 1 ELSE 1 + end_of line(i - 1);

SC Gives the position in the file of the first character
in line I)

one_line line(i)
IS VECTOR (FOR j FROM start_of_line(i) TO end of_line(i)

: fileC )[jJ ); $( The character string forming line i)

INTEGER current line)
IS 1 + CARDINALITY( ( INTEGER j I fi1e ()[j~ line_end

AND j  < pointer() 1);
$( This is the line numbe r of the line into which pointer
is pointing . It is always true that the number of
l ine_ends intervening between the beginning of the file
arid any particular character position is one less than
the line numbe r of the line containing the particular
character position . Note that by this definition, if the

• pointer is at a line end , current _line) is that of the
line terminated by tl~e line_end.)

BOOLEAN enough characters(i)
IS (I > 0 AND I + potnter() <— file_size + 1)

S( The pointer may point one position past the last
character in the file.)

OR(i < 0 AND pointer() + i >— 1)
OR i — 0; S( This is true if there are enough charac te~srelative to the pointer position to do the desired

character operation.)

• BOOLEAN enough_lines(i)
IS Ci > 0 AND current_line) + I <s  number_of_lines + 1)

• OR(i < 1 AND current_line) + I )— 1)
OR i — 0; 5( This Is true if there are enough lines ralative

to the pointer position to perform the
delete_lines operation.)

VECTOR OF CHAR character _delete(INTEGER start_position ;
INTEGER number_to_delete ;
VECTOR OF CHAR string )

SC This returns a sequence o! characters identical to
string except that a substring has been deleted . The
substring contains number_to_delete characters and
starts with start_position.)

IS VECTOR(FOR i FROM 1 TO LENGTH (string) - number_to_delete
: IF I < start position

THEN stringTij
ELSE string (i + number_to_deletefl;



—9 3—

VECTOR_OF CHAR character lnsert(INTEGER insertion point;
VECTOR_OF CHAR Insertion _string ;
VECTOR OF CHAR original _string )

IS SC This returns a sequence of cEaracters identical to
original _string except that string Is added just before
insertion _point.)

VECTOR (FOR I
FROM 1
TO LENGTH(insertlon_strlng ) + LENGTH(origlnal_string )

IF i < insertion_point
THEN orig inal string III

SC The portion before the added characters.)
ELSE IF i < insertion _point + LENGTH(insertion_string )

THEN insertion _strlng (i — insertion_point + 11
S( For i—insertion _point , the character
in the resulting string must be
insertion string (lI .)

ELSE originaT_string (i -

LENGTH (insertion_string )J)
SC The portion after the added characters.);

INTEGER not_enough_matches IS 0;

INTEGER no more_matches IS 0; SC Note , it is the same value as
not_enough_mitches.)

BOOLCAN at end (VECTOR_OF CHAR file string ;
INTEGER starting_point;
VECTOR_OF CHAR string )

IS $( True , if there are less than the length of string
characters from the starting _point through to the end of
the file_string . True ind icates that there can not be a

• match of the contents of strinq in any substrlng of
file_string beginning at starting _point.)

LENGTH(string ) ) LENGTH(file_string ) — starting _point + 1
$( The expression LENGTH (file_string ) —st arting_potnt+l
is the numbe r of characters from starting _point through
to the end of file_string.);

BOOLEAN at match (VECTOR_OF CHAR file string ;
INTEGER starting_point;
VECTOR_OF CHAR string )

IS $( True , if there is a match of string in file_string
beginning at starting point.)

NOT at end(file string , starting point, string )
AND (FO~ALL INTE~ER k I

k > 0
AND k < LENGTH (string):

• string~k) — file_string~ starting _point + k — ii ) ;

________  
___________________________________



—94—

INTIGER n.xt_match (VECTOR_OF CHAR file string ;
INTEGER starting _point;
VECTOR_OF CHAR string )

IS $( Th. position of the next match of string in file string
which occurs on or after starting _point. If there is no
match , then not enough matches is returned.)

IF at endCfile_string . starting_point, string )
THE~I not_enough matchesELSE IF at_matcE (file_string , starting _point , string )

THEN starting_point
ELSE next_match(file_string , starting_point + 1, string);

INTEGER position_after_ ith_match (VECTOR_OF CHAR file string ;
INTEGER starting_point;
VECTOR OF CHAR string to match ;
INTEGER i)

IS $(  The position just after the ith match of string_to match
in file_string . The I ma tches must all start on or after
star ting_point.)

IF I — 0
THEN starting point
ELSE IF next_match (fil.e string , starting_point, string_to_match)

- not_enough_matches
THEN not enough matches
ELSE position_a!tar_ith_match (file_strtng ,

next_match(file_string ,
starting_point,
str ing_to_match)

+ LENGTH(string_to match)
$(  The position Tollowing
the next occurrence of a
match of strin.g wh ich
is on or after
starting_point),

• string_to_match , I, — 1);

VECTOR OF CHAR result of_substitutions(VECTOR OF CHAR original;
• VECTOR_OF CHAR old ;

VECTOR OF CHAR new;
IHTEGE~ starting_point)IS 5( A new string of characters where each occurrence of

the contents of old in original is replaced by the
contents of new. Starting_point references the next
character in original where a match may begin.)

IF at erid(original, starting_point, old)
THE~I orig inalELSE IF at match(original, star ting_point, old)

• THEN LET VECTOR OF CHAR updated original -

charac ter iniert(starting_point, ne4,
character delete(starting point ,

LENGTH(oid),
• original ))

SC The result of one substitution can be viewed as
inserting the new after deleting the old.)

IN result of aubstitut ions(updated original, old , new ,
starting_point + LENGTH(new)

• $( The position after the newly inserted str ing.))
ELSE result of substitutionsCoriginal, old, new,

starting_point + 1);

kriL • .~~~~~~ ~~~~~~~~~~~~ •~~~i i• ~~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~~~~~~~~~ • ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~


• — — ••
~~~~- —~~.--• -• 

-
~~~
_ -— - ..— -- •

—9 (~‘—
INTEGER position_af tsr aubstitutions (VECTOR OF HAR original ;

VECTOR OF CHAR old;
VECTOR OF CHAR new ;
INTEGER starting point;
INTEGER numbe r_oT matches)

IS $(If all occurrences of old in original statting on or
after starting point were repl~~ t~1 by new , the posi t ion
following the Tast substitution would equal the value
returned by this definition. Number of matches is used
to keep track of the numbe r of matches found.)

IF next_match (orlglnal, starting _point, old) - no_more_matches
THEN starting point

+ number of matches * (L~NGTH(new) - LENGTH (old))
$(Starting _point has either its origin al value when the
defin ition was first used or points to the position after the

• last occurrence of a match of old that is on or after the
original starting _point. To find the location of the
position after the last substitution of new for old,
this valu• must be shifted . The shift is the number
of characters added or deleted from the file as the
result of a substitution times the numbe r of
substitutions. LENGTH (old) - LENGTH (new) reflects
the number of charac t~’rs added or deleted from
the file is a r e s u l t of •a substitution.)

ELSE IF at mat~ h(ori~ tnal, startin g poirit , old)
THEN position_ after _ substitutions(original, old , new ,

starting point
+ LENGTU(old)

$(Position where
another match *

may start.),
number _of_matches + 1)

L~LSE posltion_after _substituti ons (orlgi nal , o1d~ new ,s tar t i n g po in t + 1 ,
numb er _olj na tches) ;

FUNCTIONS

VFUN file () - VECTOR_Or CHAR vc; SC Represents text to be clited.)
HIDDEN ;
INITIALLY

m

VF UN open() —> BOOLEAN b; $(Predicate, which returns true if file
is open and therefore ready for
editing.)

HIDDEN ;
INITIALLY

FALSE;

VFUN pointer() -~~ INTEGER p; 5(Pointer into file giving the
• current position, from which most

editing operations are defined.)
HIDDEN ;
INITIALLY

p • 1;

-- • -- -—
~~~~ 

•

—96—

OFUN open_ f il e~~~; $(  D e f i n e s  the f o r m  of t h e  inpu t  f i l e ,  upon
which all editing operations are performed.)

EXCEPTIONS
open~~~;EFFECTS

• ‘open( )  — TRUE ;
‘f i l e ( )

- VECTOR ( FOR j
F ROM 1

• TO SOME INTEGER k I k )— 0 AND k <— max file size
SOME CHAR C I TRUE);

OFUN close fi1e~~ ;
~ ( Terminates an editing session. If further editing is
to be done, an open file must be performed . In
integrating this mo~ule into a complete file package,
the definitions of open file and close_file must be
modified to reflect (a) that close file writes the
modified file to disk and (b) the ~efinition , perhapsvia operating system commands , of which file is opened
and of except ions corresponding to not finding a file by
that name.)

EXCEPTIONS
NOT openU;

EFFECTS
‘open() - FALSE;

VFUN display_lines(i) -) VECTOR_OF CHAR vc;
S( This ‘prints ’ lines or makes them visible relative to
the current position. If! i)0, then the current line
starting at the current position will be displayed , as
welt as i—i lines following the current one . If i.(—0,
then the cutrent line up to the position before current
position is displayed as well as the absolute value of i
lines preceding the current line . Notice that the value
returned by display_l ines is just the sequence of
characters including line_ends as they appear in the
file; if the lines are to be truly pr inted , the line_end
characters must be used to generate the appropriate
control characters for the particular output device
invo lved .)

EXCEPTIONS
NOT open~~ ;
NOT enough_linesCi);

DERIVATION
IF 1 > 0
THEN VECTOR(FOR j

FROM pointer ()
TO end of line(current line) + I — 1): file ()TjJT

ELSE VECTOR(FOR j
FROM start of_ l lne(current_linet + I,)
TO pointerT) — 1: file~~~(j1 )SC For some appl ications , it may be preferable to have

display_lines return a sequence of lines rather than a
string of characters with the line boundaries as
charac ters. To do this , the value returned should be
VECTOR OF one_line ; the vector is easily defined using 

•

the definitions of line Ci) and current_line).);

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


—97—

OFUN move_pointer_ i_characters (I);
$(If i>0 , then advance the pointer i characters forward.
If i<0 , then move the pointer back over the absolute
value of i characters. If i— 0 , then no change occurs. In
moving the pointer foward , one is allowed to move it one
position after the last character of the file.)

EXCEPTIONS
NOT open~~ ;NOT enough characters(i);

EFFECTS
‘p o i n t e r () — p o i nt e r () + i;

OFUN move_pointer_over_ i_lines(i);
$(This positions the pointer to the beginning of a line
I lines from the current pointer. That is, if i— 0 , the
pointer is moved to the beginning of the current line .
If i 0 , the pointer is moved to the beginning of the ith
line after the current one. If i<0 , the pointer is moved
to the beginning of the absolute value of i lines before
the current line.)

EXCEPTIONS
• NOT open~~ ;NOT enough_lines(i);

EFFECTS
‘pointer() — s t a r t_of _ l i n e (c u r r e n t_ lin e t + i);

OFtJN move to beginning of_fileo); SC Moves pointer to the first
character of the file.)

EXCEPTIONS
NOT open();

EFFECTS --

‘pointer() — 1;

OFUN move to end of file~~ ; SC Set the pointer to the position
after the last character in the file.)

EXCEPTIONS
NOT o p e n o) ;

• EFFECTS
‘pointer () — file_size + 1;

OFUN delete characters (i);
$1 If i>9 , then the character indicated by pointer and
the i—I. characters following it are deleted ;
additionally, pointer points to the next remaining
character. If i<0 , then the absolute value of i
characters preceding the pointer are deleted and the
pointer points to the same character as before. If 1—0 ,
this has no effect.)

EXCEPTIONS
NOT openU;
NOT enough characters (l);

EFFECTS
IF i >— 0
THEN ‘file() — character delete (pointec(), 1., file~~)• ELSE ‘file()

— character delete (pointer() + i, 0 — I, file())
~ND ‘pointeri) a pointer() + I;

________ •
• • — _•_••___•a

__~_••_ - !&&~~~_ a a ~ ..t_-. _ • •~ __ • - —•~_ L S ~~~~~

• - - S - — • ~~~~~~~~~~~~ __ __ ••• _•••••_••••____i

__________________________ — —~
— -r—— ~‘-

— — -

_ ~— • —-_-—

—98—

OFUN delete lines(i);
$1 If i>0, then all characters on the current line at or
after pointer are deleted ; additionally, the next i— i
lines are deleted , and the pointer points to the first
character a f t e r the deleted ones. If i < — 0 , then all
characters of the current line preced ing the pointer are
deleted ; additionally, the absolute value of i lines
preceding current line are also deleted . In the case of
i< 0 , the pointer will continue to point to the same
character as before the delete.)

EXCEPTIONS
NOT open~~~;
NOT enoug h_l i ne s(i) ;

EFFECTS
IF i > 0

THEN ‘f i l e()
— character_delete(pointer ~~~~,

end_of l ine(curren t_line) + i — 1)
— pointer() + 1

SCm. number of characters to
be deleted), file fl)

$(The value of pointer need not be changed. The pointer
afterwards either is just past the end of the file if
all lines to the end of the file were deleted , or is at
the first character of the next non_deleted line.;

ELSE ‘file()
— character_delete(start_of_line (current line) + i),

pointer C)
— s ta r t_of _ l i n e (c u r r e n t l ine) + i)
$(The number of characters to be
deleted .),

fiJ .e~ j)
AND ‘pointer () — star _of_line (current_line* + i);

OFUN delete_entire_file~~ ; S C This deletes the edited copy of the
file.)

EXCEPTIONS
NOT o p e n o) ;

EFFECTS
‘file() — VECTORf l ;
‘pointer() — 1;

OFUN insert characters(VECTOR_OF CHAR string);
$~ This operation adds the string just before the
pointer. However , the pointer continues to point to the
same character . String may in fact includ e line_ends;
therefore adding several lines to a file. If one wants
to add new lines to the end of the file , one should move
the pointer to the position after the last character in
the file; in this case , string should begin with a
line_end if the last character in the file is not a
line end.)

EXCEPTIONS
NOT open~~ ;file size + LENGTH(string) > max file size;

EFFECTS
‘file() — character insert(pointer(), string , filsO);
‘pointero) - pointe~ () + LENGTH (string);

_s. ‘t~~~a~~~~ a ._à,. ìá

—99..

OFUN scan(VECTOR_OF CHAR string ; INTEGER i);
SC This operation moves the pointer to just after the ith
occurrence of string occurring at or after the pointer
in the file.)

EXCEPTIONS
NOT openO;
LENGTH(string) — 0;
i < 0;
position_after _ ith_match (flle~~ , pointer(), string , i)

‘ — not_enough_matches;
EFFECTS

‘pointer C)
— position_after_ ith_match (file~~ , pointer(), string , i);

OFtJN replace(VECTOR_OF CHAR old ; VECTOR_OF CHAR new) ;
SC This substitutes the new string for the old string
whenever old occurs starting at or after the pointer.
Additionally, the pointer is positioned to the character
following the last substitution.)

EXCEPTIONS
NOT open~~ ;LENGTH (oid) - 0;
max file_size

< LENGTH(result of substitutions (fileO. , old , new , pointer ()));
EFFECTS

‘file()
— result_of_substitutions(file fl, old , new , pointer~~);‘pointer ()
— position_after_substitutions(filefl, old , new , pointer (),

0);

END_MODULE

9

